Use logarithmic differentation to find the derivative of the function.
y=√xex2(x2+1)10
Anyone who knows how to solve for the answer and can write down the steps, I would really appreciate it. Thanks.
It uses implicit differentiation:
d/dx(y) = d/dx({e^(x^2) sqrt(x) (1 + x^2)^10})
The derivative of y is y'(x):
y'(x) = d/dx({e^(x^2) sqrt(x) (1 + x^2)^10})
Using the chain rule, d/dx({e^(x^2) sqrt(x) (x^2 + 1)^10}) = ( du)/( du) ( du)/( dx), where u = e^(x^2) sqrt(x) (x^2 + 1)^10 and d/( du)({u}) = {1}:
y'(x) = {d/dx(e^(x^2) sqrt(x) (1 + x^2)^10)}
Use the product rule, d/dx(u v) = v ( du)/( dx) + u ( dv)/( dx), where u = e^(x^2) and v = sqrt(x) (x^2 + 1)^10:
y'(x) = {sqrt(x) (x^2 + 1)^10 d/dx(e^(x^2)) + e^(x^2) d/dx(sqrt(x) (1 + x^2)^10)}
Using the chain rule, d/dx(e^(x^2)) = ( d e^u)/( du) ( du)/( dx), where u = x^2 and d/( du)(e^u) = e^u:
y'(x) = {e^(x^2) (d/dx(sqrt(x) (1 + x^2)^10)) + e^(x^2) d/dx(x^2) sqrt(x) (1 + x^2)^10}
Use the power rule, d/dx(x^n) = n x^(n - 1), where n = 2.
d/dx(x^2) = 2 x:
y'(x) = {e^(x^2) (d/dx(sqrt(x) (1 + x^2)^10)) + 2 x e^(x^2) sqrt(x) (1 + x^2)^10}
Simplify the expression:
y'(x) = {2 e^(x^2) x^(3/2) (1 + x^2)^10 + e^(x^2) (d/dx(sqrt(x) (1 + x^2)^10))}
Use the product rule, d/dx(u v) = v ( du)/( dx) + u ( dv)/( dx), where u = sqrt(x) and v = (x^2 + 1)^10:
y'(x) = {2 e^(x^2) x^(3/2) (1 + x^2)^10 + (x^2 + 1)^10 d/dx(sqrt(x)) + sqrt(x) d/dx((1 + x^2)^10) e^(x^2)}
Use the power rule, d/dx(x^n) = n x^(n - 1), where n = 1/2.
d/dx(sqrt(x)) = d/dx(x^(1/2)) = x^(-1/2)/2:
y'(x) = {2 e^(x^2) x^(3/2) (1 + x^2)^10 + e^(x^2) (sqrt(x) (d/dx((1 + x^2)^10)) + 1/(2 sqrt(x)) (1 + x^2)^10)}
Using the chain rule, d/dx((x^2 + 1)^10) = ( du^10)/( du) ( du)/( dx), where u = x^2 + 1 and d/( du)(u^10) = 10 u^9:
y'(x) = {2 e^(x^2) x^(3/2) (1 + x^2)^10 + e^(x^2) ((1 + x^2)^10/(2 sqrt(x)) + 10 (x^2 + 1)^9 d/dx(1 + x^2) sqrt(x))}
Differentiate the sum term by term:
y'(x) = {2 e^(x^2) x^(3/2) (1 + x^2)^10 + e^(x^2) ((1 + x^2)^10/(2 sqrt(x)) + d/dx(1) + d/dx(x^2) 10 sqrt(x) (1 + x^2)^9)}
The derivative of 1 is zero:
y'(x) = {2 e^(x^2) x^(3/2) (1 + x^2)^10 + e^(x^2) ((1 + x^2)^10/(2 sqrt(x)) + 10 sqrt(x) (1 + x^2)^9 (d/dx(x^2) + 0))}
Simplify the expression:
y'(x) = {2 e^(x^2) x^(3/2) (1 + x^2)^10 + e^(x^2) ((1 + x^2)^10/(2 sqrt(x)) + 10 sqrt(x) (1 + x^2)^9 (d/dx(x^2)))}
Use the power rule, d/dx(x^n) = n x^(n - 1), where n = 2.
d/dx(x^2) = 2 x:
y'(x) = {2 e^(x^2) x^(3/2) (1 + x^2)^10 + e^(x^2) ((1 + x^2)^10/(2 sqrt(x)) + 2 x 10 sqrt(x) (1 + x^2)^9)}
Simplify the expression:
| y'(x) = {2e^(x^2) x^(3/2) (1 + x^2)^10 + e^(x^2) (20 x^(3/2) (1 + x^2)^9 + (1 + x^2)^10/(2 sqrt(x)))} [Courtesy of Mathematica 11 Home Edition]
This may be the right answer; however, the instructions say to use logarithmic differentation. If anyone knows how to solve for the answer usin logarithmic differentation, I would really appreciate it. Thanks.
It gives this answer using "Logarithmic Differentiation", but does not give step by step answer. Sorry about that:
Log(y'(x) = 2e^(x^2) x^(3/2) (x^2 + 1)^10 + (e^(x^2) (x^2 + 1)^10)/(2 sqrt(x)) + 20 e^(x^2) x^(3/2) (x^2 + 1)^9). Note: it uses natural logs.
Use logarithmic differentation to find the derivative of the function.
y=√xe(x2)(x2+1)10
y=\sqrt{x}{e}^{(x^2)}(x^2+1)^{10}
Anyone who knows how to solve for the answer and can write down the steps?
Formula
( lnf(x) )′=f′(x)f(x)
1. logarithm of both sides
y=√xe(x2)(x2+1)10|ln() both sidesln(y)=ln(√x)+ln(e(x2))+ln((x2+1)10)ln(y)=ln(x12)+ln(e(x2))+ln((x2+1)10)|Formula: ln(ab)=bln(a)ln(y)=12ln(x)+x2ln(e)+10ln(x2+1)|Formula: ln(e)=1ln(y)=12ln(x)+x2+10ln(x2+1)
2. derivation of both sides
ln(y)=12ln(x)+x2+10ln(x2+1)|derivate both sides(ln(y))′=(12ln(x))′+(x2)′+(10ln(x2+1))′y′y=12⋅1x+2x+10⋅2xx2+1y′y=12x+2x+20xx2+1|⋅yy′=y⋅(12x+2x+20xx2+1)|y=√xe(x2)(x2+1)10y′=√xe(x2)(x2+1)10⋅(12x+2x+20xx2+1)y′=x12e(x2)(x2+1)10⋅(12x+2x+20xx2+1)y′=x12e(x2)(x2+1)102x+x12e(x2)(x2+1)10⋅2x+x12e(x2)(x2+1)10⋅20xx2+1y′=e(x2)(x2+1)102x1−12+2e(x2)x12+1(x2+1)10+20e(x2)x12+1(x2+1)10⋅1(x2+1)1y′=e(x2)(x2+1)102x12+2e(x2)x32(x2+1)10+20e(x2)x32(x2+1)10−1y′=e(x2)(x2+1)102√x+2e(x2)x32(x2+1)10+20e(x2)x32(x2+1)9
y′=e(x2)(x2+1)102√x+2e(x2)x32(x2+1)10+20e(x2)x32(x2+1)9