+0  
 
0
3955
1
avatar

Find the critical numbers of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) h(p) = p − 5 p2 + 3

 Oct 30, 2015

Best Answer 

 #1
avatar+130544 
+10

I assume this is :

 

h(p) = p − 5 p^2 + 3    if so.....take the derivative

 

h ' (p)   =  1 - 10p

 

Set this to 0    and solve

 

1 - 10p = 0        add 10 p to both sides

 

1 = 10p        divide both sides by  10

 

p = 1/10      so ,  we have a critical number at x = 1/10  = 0.1

 

The second derivative = -10.........so tthis is a max

 

And the point is  (0.1, 3.05)

 

Here's the graph.......https://www.desmos.com/calculator/hvhpff2qst

 

 

cool cool cool

 Oct 30, 2015
 #1
avatar+130544 
+10
Best Answer

I assume this is :

 

h(p) = p − 5 p^2 + 3    if so.....take the derivative

 

h ' (p)   =  1 - 10p

 

Set this to 0    and solve

 

1 - 10p = 0        add 10 p to both sides

 

1 = 10p        divide both sides by  10

 

p = 1/10      so ,  we have a critical number at x = 1/10  = 0.1

 

The second derivative = -10.........so tthis is a max

 

And the point is  (0.1, 3.05)

 

Here's the graph.......https://www.desmos.com/calculator/hvhpff2qst

 

 

cool cool cool

CPhill Oct 30, 2015

1 Online Users