We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
214
3
avatar+814 

The graphs of \(y=x^4\) and \(y=7x^2-10\) intersect at four points with \(x\)-coordinates \(\pm \sqrt{m}\)  and \(\pm \sqrt{n}\), where \(m > n\). What is \(m-n\) ?

 Aug 22, 2018
edited by mathtoo  Aug 22, 2018
edited by mathtoo  Aug 22, 2018

Best Answer 

 #1
avatar+27837 
+4

Equate the two expressions:   x4 = 7x2 - 10 

 

Rearrange:   x4 - 7x2 + 10 = 0

 

Let z = x2 

 

z2 - 7z + 10 = 0

 

This factorises nicely as:  (z - 2)(z - 5) = 0

 

So z = 2 and z = 5

 

or  x2 = 2  and x2 = 5

 

n = 21/2, m = 51/2   so m - n = 51/2 - 21/2 

.

 Aug 22, 2018
 #1
avatar+27837 
+4
Best Answer

Equate the two expressions:   x4 = 7x2 - 10 

 

Rearrange:   x4 - 7x2 + 10 = 0

 

Let z = x2 

 

z2 - 7z + 10 = 0

 

This factorises nicely as:  (z - 2)(z - 5) = 0

 

So z = 2 and z = 5

 

or  x2 = 2  and x2 = 5

 

n = 21/2, m = 51/2   so m - n = 51/2 - 21/2 

.

Alan Aug 22, 2018
 #2
avatar+814 
+2

Thanks! So, the answer is 5-2=3?

mathtoo  Aug 22, 2018
 #3
avatar+27837 
+2

Yes.  I'm afraid I gave the positive roots of the equation the labels m and n, but, had I looked more carefully, I would have noticed that your definition of m and n referred to the values under the square root sign!

Alan  Aug 22, 2018
edited by Alan  Aug 22, 2018

8 Online Users