We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
54
2
avatar

Consider the matrices

\(\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 &3 \\ 1 & 3 & 5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 &2 \\ 3 & -6 & 3 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1\\ 1 & 1 & 0 \end{pmatrix}.\)

For each matrix in the list above, figure out whether the matrix is invertible.

 

For each matrix in the list above, enter in "point" if the output grid covers a point, "line" if the output grid covers a line, "plane" if the output grid covers a plane, and "3-space" if it covers all of three-dimensional space.

 Aug 15, 2019
 #1
avatar+5766 
+1

\(\text{The best way to proceed here is to row reduce each matrix to reveal it's rank}\\ \text{You'll need that info for the second part of the question anyway}\\~\\ \text{$\textbf{A}$ is the identify matrix. You should know immediately that it's rank 3 and thus invertible}\\~\\ \text{$\textbf{B}$ has to be row reduced}\\ \text{$\textbf{B} \sim \left( \begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ \end{array} \right)$}\\ \text{We see that $\textbf{B}$ is rank 2 and thus not invertible}\)

 

\(\text{$\textbf{C} \sim \left( \begin{array}{ccc} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right)$}\\ \text{$\textbf{C}$ is seen to be rank 1 and thus not invertible}\)

 

\(\text{$\textbf{D}$ row reduces to the identity matrix and is thus rank 3 and invertible}\)

 

\(\text{As far as the output goes rank 3 outputs to all 3D space, rank 2 to a plane, rank 1 to a line}\\ \text{$\textbf{A}$ and $\textbf{D}$ output to all 3D space}\\ \text{$\textbf{B}$ outputs to a plane}\\ \text{$\textbf{C}$ outputs to a line}\)

.
 Aug 15, 2019
edited by Rom  Aug 16, 2019
 #2
avatar+23041 
+1

Consider the matrices

\(\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 &3 \\ 1 & 3 & 5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 &2 \\ 3 & -6 & 3 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1\\ 1 & 1 & 0 \end{pmatrix}.\)

 

\(\boxed{\text{Any matrix }\mathbf{A}\text{ can be inverted if the following applies: } \mathbf{det(A)\ne 0} } \)

 

 

\(\begin{array}{|rcll|} \hline \det(A) &=& \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \\ &=& 1\cdot 1 \cdot 1 +0\cdot 0 \cdot 0 +0\cdot 0 \cdot 0 -0\cdot 1 \cdot 0 -1\cdot 0 \cdot 0 -0\cdot 0 \cdot 1 \\ &=& 1+0+0-0-0-0 \\ &=& \mathbf{1} \quad | \quad \mathbf{A} \text{ is invertible } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \det(B) &=& \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 &3 \\ 1 & 3 & 5 \end{vmatrix} \\ &=& 1\cdot 2 \cdot 5 +1\cdot 1 \cdot 3 +1\cdot 3 \cdot 1 -1\cdot 2 \cdot 1 -1\cdot 3 \cdot 3 -1\cdot 1 \cdot 5 \\ &=& 10+3+3-2-9-5 \\ &=& \mathbf{0} \quad | \quad \mathbf{B} \text{ is not invertible } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \det(C) &=& \begin{vmatrix} 1 & -2 & 1 \\ 2 & -4 &2 \\ 3 & -6 & 3 \end{vmatrix} \\ &=& 1\cdot (-4) \cdot 3 +3\cdot (-2) \cdot 2 +2\cdot (-6) \cdot 1 -3\cdot (-4) \cdot 1 -1\cdot (-6) \cdot 2 -2\cdot (-2) \cdot 3 \\ &=& -12-12-12+12+12+12 \\ &=& \mathbf{0} \quad | \quad \mathbf{C} \text{ is not invertible } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \det(D) &=& \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1\\ 1 & 1 & 0 \end{vmatrix} \\ &=& 1\cdot 1 \cdot 0 +1\cdot 0 \cdot 1 +0\cdot 1 \cdot 1 -1\cdot 1 \cdot 1 -1\cdot 1 \cdot 1 -0\cdot 0 \cdot 0 \\ &=& 0+0+0-1-1-0 \\ &=& \mathbf{-2} \quad | \quad \mathbf{D} \text{ is invertible } \\ \hline \end{array}\)

 

laugh

 Aug 16, 2019
edited by heureka  Aug 16, 2019

25 Online Users

avatar