+0  
 
+1
40
3
avatar+474 

The roots of the quadratic equation \(z^2 + az + b = 0\) are \(2-3i\)  and \(2+3i\). What is \(a+b\)?

ant101  May 6, 2018
Sort: 

3+0 Answers

 #1
avatar+660 
+7

Hi ant101!

 

We use the rule that states:

 

In the quadratic equation \(ax^2+bx+c=0\)

 

The sum of the roots is \(-\frac{b}{a}\)

 

The produdct of the roots is \(\frac{c}{a}\)

 

In your question, the sum of the two roots is \(2-3i+3i+2=4\)

 

The product is, \((2-3i)(2+3i)\)

 

Using \(a^2-b^2=(a-b)(a+b)\)

 

\((2-3i)(2+3i)=2^2-(3i)^2=4-(9\cdot(-1))=4+9=13\)

 

Using the law, \(-\frac{a}{1}=4 \\ \frac{b}{1}=13\)

 

\(a=-4 \\ b=13 \\ 13+(-4)=\boxed9\)

 

That is the answer you seek.

 

I hope this helped,


Gavin

GYanggg  May 6, 2018
edited by GYanggg  May 7, 2018
 #2
avatar+474 
+4

Amazing! Beautiful, Gavin! 

ant101  May 6, 2018
 #3
avatar+660 
+6

Thanks, I'n just glad I can help. 

GYanggg  May 6, 2018

7 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy