$${dx \over dt}=P(x,y), \qquad {dy \over dt}=Q(x,y)$$
do you want $$\frac{dy}{dx}?$$
Well $$\\{dx \over dt}={P(x,y)\over 1}\qquad \mbox{therefore}\\\\
{dt \over dx}={1 \over P(x,y)} \\\\
so\\\\
\dfrac{dy}{dt}\times\dfrac{dt}{dx}=Q(x,y)\times \dfrac{1}{P(x,y)}\\\\\\
\dfrac{dy}{dx}=\dfrac{Q(x,y)}{P(x,y)}$$
$${dx \over dt}=P(x,y), \qquad {dy \over dt}=Q(x,y)$$
do you want $$\frac{dy}{dx}?$$
Well $$\\{dx \over dt}={P(x,y)\over 1}\qquad \mbox{therefore}\\\\
{dt \over dx}={1 \over P(x,y)} \\\\
so\\\\
\dfrac{dy}{dt}\times\dfrac{dt}{dx}=Q(x,y)\times \dfrac{1}{P(x,y)}\\\\\\
\dfrac{dy}{dx}=\dfrac{Q(x,y)}{P(x,y)}$$