+0  
 
0
689
4
avatar

Can someone write all process to find a, here are the task:

 

 

25=\frac{24^{2}}{a^{2}}+\frac{a^{2}}{2^{2}}

 Aug 4, 2016
 #1
avatar+130511 
0

\(25=\frac{24^{2}}{a^{2}}+\frac{a^{2}}{2^{2}}\)

 

25  = 576/a^2  + a^2 / 4        getting a commom denominator on the right, we have

 

25  = [ 576 * 4 + a^4 ]  / [ 4a^2]    cross-multiply

 

25 * 4a^2  = 576 *4 + a^4

 

100a^2  = 2304 + a^4    rearrange

 

a^4 - 100a^2 - 2304  =  0      this can be factored as

 

(a^2 - 36) (a^2 - 64)   = 0      setting both factors to  0, we have that

 

a^2 - 36  = 0        which means that a = ± 6    and

 

a^2 - 64  = 0       which means that the other two soliutions are a = ± 8

 

So  a =  { -8, -6, 6, 8 }

 

 

cool cool cool

 Aug 4, 2016
 #2
avatar
0

 

a^4 - 100a^2 - 2304  =  0      this can be factored as

 

(a^2 - 36) (a^2 - 64)   = 0

 

But how it can be factored? if       (-36)*(-64)=2304 but  you write -2304, and i need to get just one solution.

 

Thanks anyway for your help.

 Aug 5, 2016
edited by Guest  Aug 5, 2016
 #3
avatar
0

Solve for a:
25 = a^2/4+576/a^2

 

25 = a^2/4+576/a^2 is equivalent to a^2/4+576/a^2 = 25:
a^2/4+576/a^2 = 25

 

Bring a^2/4+576/a^2 together using the common denominator 4 a^2:
(a^4+2304)/(4 a^2) = 25

 

Multiply both sides by 4 a^2:
a^4+2304 = 100 a^2

 

Subtract 100 a^2 from both sides:
a^4-100 a^2+2304 = 0

 

Substitute x = a^2:
x^2-100 x+2304 = 0

 

The left hand side factors into a product with two terms:
(x-64) (x-36) = 0

 

Split into two equations:
x-64 = 0 or x-36 = 0

 

Add 64 to both sides:
x = 64 or x-36 = 0

 

Substitute back for x = a^2:
a^2 = 64 or x-36 = 0

 

Take the square root of both sides:
a = 8 or a = -8 or x-36 = 0

 

Add 36 to both sides:
a = 8 or a = -8 or x = 36

 

Substitute back for x = a^2:
a = 8 or a = -8 or a^2 = 36

 

Take the square root of both sides:
Answer: |a = 8    or    a = -8    or    a = 6    or    a = -6

 Aug 5, 2016
 #4
avatar+130511 
0

Sorry...I made a typo when rearranging 100a^2  = 2304 + a^4 

 

It should have been     a^4 - 100a^2 + 2304  = 0

 

Everything works fine after that......and we will have multiple solutions.....

 

 

 

cool cool cool

 Aug 5, 2016

3 Online Users

avatar
avatar