+0  
 
0
308
1
avatar

Evaluate the algebraic expressions below (no decimal answers)

1. N^2 - 25      a) when n=-10      b) when n=-5    c) when n=1/2    d) when n=9

2. (-7d + 14)/2      a) when d=2    b) when d=-2      c) when d= 6/7    d)  when d=4

3. 2x^-2 - x          a) when x=2      b) when x=-1    c)  when x= 1/4

Guest Jul 1, 2017

Best Answer 

 #1
avatar+2248 
+2

Evaluating these algebraid expressions just requires you to substitute in the values given for the variable. Let's do the first one together:
 

1. \(N^2-25\)

 

a) When n=-10

 

\(N^2-25\) Replace N, the variable, with -10 and evaluate from there.
\((-10)^2-25\) Do \((-10)^2=-10*-10=100\) first so to adhere to the order of operations. 
\(100-25\)  
\(75\)  
   

 

The process repeats for the other values for N

 

b) n=-5

 

\(N^2-25\)  
\((-5)^2-25\)  
\(25-25\)  
\(0\)  
   

 

c) n=1/2

 

\(N^2-25\)  
\((\frac{1}{2})^2-25\) Remember that squaring a fraction follows the rule that \((\frac{a}{b})^2=\frac{a^2}{b^2}\)
\(\frac{1^2}{2^2}-25\) Simplify the fraction.
\(\frac{1}{4}-25\) Change 25 to an improper fraction so that you can subtract it from 1/4.
\(\frac{25}{1}*\frac{4}{4}=\frac{100}{4}\) Now that we have changed 25 to a fraction with a common denominator, reinsert it back into the equation.
\(\frac{1}{4}-\frac{100}{4}\) Subtract the fractions.
\(-\frac{99}{4}=-24\frac{3}{4}\) The fraction is already in simplest form. I've provided both versions of the answer.
   

 

d) n=9

 

\(N^2-25\)  
\(9^2-25\)  
\(81-25\)  
\(56\)  
   

 

I'll do half of the next one and the rest are up to you to complete:

 

2. \(\frac{-7d+14}{2}\)

 

a) d=2

 

\(\frac{-7d+14}{2}\) Substitute the given value for d, 2.
\(\frac{-7*2+14}{2}\) Do -7*2 first.
\(\frac{-14+14}{2}\) Simplify the numerator by calculating -14+14.
\(\frac{0}{2}=0\)  
   
   

 

b) d=-2

 

\(\frac{-7d+14}{2}\)  
\(\frac{-7*-2+14}{2}\) A negative times a negative always results in a positive.
\(\frac{14+14}{2}\)  
\(\frac{28}{2}\) Divide 28 by 2.
\(14\)  
   
TheXSquaredFactor  Jul 2, 2017
 #1
avatar+2248 
+2
Best Answer

Evaluating these algebraid expressions just requires you to substitute in the values given for the variable. Let's do the first one together:
 

1. \(N^2-25\)

 

a) When n=-10

 

\(N^2-25\) Replace N, the variable, with -10 and evaluate from there.
\((-10)^2-25\) Do \((-10)^2=-10*-10=100\) first so to adhere to the order of operations. 
\(100-25\)  
\(75\)  
   

 

The process repeats for the other values for N

 

b) n=-5

 

\(N^2-25\)  
\((-5)^2-25\)  
\(25-25\)  
\(0\)  
   

 

c) n=1/2

 

\(N^2-25\)  
\((\frac{1}{2})^2-25\) Remember that squaring a fraction follows the rule that \((\frac{a}{b})^2=\frac{a^2}{b^2}\)
\(\frac{1^2}{2^2}-25\) Simplify the fraction.
\(\frac{1}{4}-25\) Change 25 to an improper fraction so that you can subtract it from 1/4.
\(\frac{25}{1}*\frac{4}{4}=\frac{100}{4}\) Now that we have changed 25 to a fraction with a common denominator, reinsert it back into the equation.
\(\frac{1}{4}-\frac{100}{4}\) Subtract the fractions.
\(-\frac{99}{4}=-24\frac{3}{4}\) The fraction is already in simplest form. I've provided both versions of the answer.
   

 

d) n=9

 

\(N^2-25\)  
\(9^2-25\)  
\(81-25\)  
\(56\)  
   

 

I'll do half of the next one and the rest are up to you to complete:

 

2. \(\frac{-7d+14}{2}\)

 

a) d=2

 

\(\frac{-7d+14}{2}\) Substitute the given value for d, 2.
\(\frac{-7*2+14}{2}\) Do -7*2 first.
\(\frac{-14+14}{2}\) Simplify the numerator by calculating -14+14.
\(\frac{0}{2}=0\)  
   
   

 

b) d=-2

 

\(\frac{-7d+14}{2}\)  
\(\frac{-7*-2+14}{2}\) A negative times a negative always results in a positive.
\(\frac{14+14}{2}\)  
\(\frac{28}{2}\) Divide 28 by 2.
\(14\)  
   
TheXSquaredFactor  Jul 2, 2017

13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.