+0  
 
0
481
2
avatar

what is (x-3)4

 Mar 22, 2015

Best Answer 

 #2
avatar+1904 
+5

$${\left({{\mathtt{x}}}^{-{\mathtt{3}}}\right)}^{{\mathtt{4}}}$$

 

$${\left({\frac{{\mathtt{1}}}{{{\mathtt{x}}}^{{\mathtt{3}}}}}\right)}^{{\mathtt{4}}}$$

 

$${\frac{{{\mathtt{1}}}^{{\mathtt{4}}}}{{\left({{\mathtt{x}}}^{{\mathtt{3}}}\right)}^{{\mathtt{4}}}}}$$

 

$${\frac{\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}{{\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}^{{\mathtt{4}}}}}$$

 

$${\frac{\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}{\left({{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{4}}}\right)}}$$

 

$${\frac{\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}{\left(\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)\right)}}$$

 

$${\frac{\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}{\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}}$$

 

$$\left({\frac{{\mathtt{1}}}{{{\mathtt{x}}}^{{\mathtt{12}}}}}\right)$$

.
 Mar 22, 2015
 #1
avatar
0

It's 6x when it is an expopnent

 Mar 22, 2015
 #2
avatar+1904 
+5
Best Answer

$${\left({{\mathtt{x}}}^{-{\mathtt{3}}}\right)}^{{\mathtt{4}}}$$

 

$${\left({\frac{{\mathtt{1}}}{{{\mathtt{x}}}^{{\mathtt{3}}}}}\right)}^{{\mathtt{4}}}$$

 

$${\frac{{{\mathtt{1}}}^{{\mathtt{4}}}}{{\left({{\mathtt{x}}}^{{\mathtt{3}}}\right)}^{{\mathtt{4}}}}}$$

 

$${\frac{\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}{{\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}^{{\mathtt{4}}}}}$$

 

$${\frac{\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}{\left({{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{4}}}\right)}}$$

 

$${\frac{\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}{\left(\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)\right)}}$$

 

$${\frac{\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right)}{\left({\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}}$$

 

$$\left({\frac{{\mathtt{1}}}{{{\mathtt{x}}}^{{\mathtt{12}}}}}\right)$$

gibsonj338 Mar 22, 2015

1 Online Users

avatar