+0  
 
0
29
1
avatar

For the function g(x)=x^3-2x^2-1, at what tangent point is the instantaneous rate of change equal to -1?

Guest Nov 24, 2018
 #1
avatar+92429 
+2

The derivative of the function is

 

3x^2 - 4x....set this equal to  - 1   and solve for x

 

3x^2 - 4x  = -1    

 

3x^2 - 4x + 1    =    0

 

(3x - 1) ( x - 1)   = 0

 

Setting each factor to 0 and solving for x produces

 

 x = 1/3       or         x  = 1

 

And when x = 1/3, y = -32/27

 

And when x = 1, y = -2

 

So.....we have two points where this is true

 

(1/3, -32/27)    and ( 1, - 2 )

 

 

cool cool cool

CPhill  Nov 24, 2018

10 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.