\frac{a}{c} + \frac{bc - ad}{c} \left [ \frac{(cx - a + \alpha)\alpha^{n - 1} - (cx - a + \beta)\beta^{n - 1}}{(cx - a + \alpha)\alpha^{n} - (cx - a + \beta)\beta^{n}} \right ]
where:
\alpha = \frac{a + d + \sqrt{(a - d)^2 + 4bc}}{2}
\beta = \frac{a + d - \sqrt{(a - d)^2 + 4bc}}{2}
\left\{b+1,\sum_{i=a}^b g(i)\right\} \equiv \left( \{i,x\} \rightarrow \{ i+1 ,x+g(i) \}\right)^{b-a+1} \{a,0\}
and the equivalent product:
\left\{b+1,\prod_{i=a}^b g(i)\right\} \equiv \left( \{i,x\} \rightarrow \{ i+1 ,x g(i) \}\right)^{b-a+1} \{a,1\}
You need to select the LaTeX Formula button from the ribbon and enter your LaTeX into that (I just copied and pasted it below).
$$\frac{a}{c} + \frac{bc - ad}{c} \left [ \frac{(cx - a + \alpha)\alpha^{n - 1} - (cx - a + \beta)\beta^{n - 1}}{(cx - a + \alpha)\alpha^{n} - (cx - a + \beta)\beta^{n}} \right ]
where:
\alpha = \frac{a + d + \sqrt{(a - d)^2 + 4bc}}{2}
\beta = \frac{a + d - \sqrt{(a - d)^2 + 4bc}}{2}
\left\{b+1,\sum_{i=a}^b g(i)\right\} \equiv \left( \{i,x\} \rightarrow \{ i+1 ,x+g(i) \}\right)^{b-a+1} \{a,0\}
and the equivalent product:
\left\{b+1,\prod_{i=a}^b g(i)\right\} \equiv \left( \{i,x\} \rightarrow \{ i+1 ,x g(i) \}\right)^{b-a+1} \{a,1\}$$
I'm not clear what your question is though!
You need to select the LaTeX Formula button from the ribbon and enter your LaTeX into that (I just copied and pasted it below).
$$\frac{a}{c} + \frac{bc - ad}{c} \left [ \frac{(cx - a + \alpha)\alpha^{n - 1} - (cx - a + \beta)\beta^{n - 1}}{(cx - a + \alpha)\alpha^{n} - (cx - a + \beta)\beta^{n}} \right ]
where:
\alpha = \frac{a + d + \sqrt{(a - d)^2 + 4bc}}{2}
\beta = \frac{a + d - \sqrt{(a - d)^2 + 4bc}}{2}
\left\{b+1,\sum_{i=a}^b g(i)\right\} \equiv \left( \{i,x\} \rightarrow \{ i+1 ,x+g(i) \}\right)^{b-a+1} \{a,0\}
and the equivalent product:
\left\{b+1,\prod_{i=a}^b g(i)\right\} \equiv \left( \{i,x\} \rightarrow \{ i+1 ,x g(i) \}\right)^{b-a+1} \{a,1\}$$
I'm not clear what your question is though!