+0  
 
0
630
2
avatar

why does the scientific calculator show that (2 1/2) squared is 1, when it is actually 6 1/4?

 Jun 16, 2016
 #1
avatar
0

Because, you are probably doing something wrong. Enter 2 1/2 as 2.5 and press x^2 key followed by = sign to get your answer.

 Jun 16, 2016
 #2
avatar+1904 
0

Two ways to solve this.

 

The long way:

 

\((2+\frac{1}{2})^2\)

 

\((2+\frac{1}{2})(2+\frac{1}{2})\)

 

\(2\times2+2\times\frac{1}{2}+2\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{2}\)

 

\(4+2\times\frac{1}{2}+2\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{2}\)

 

\(4+\frac{2}{2}+2\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{2}\)

 

\(4+1+2\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{2}\)

 

\(4+1+\frac{2}{2}+\frac{1}{2}\times\frac{1}{2}\)

 

 

\(4+1+1+\frac{1}{2}\times\frac{1}{2}\)

 

\(4+1+1+\frac{1}{4}\)

 

\(5+1+\frac{1}{4}\)

 

\(6+\frac{1}{4}\)

 

\(\frac{24}{4}+\frac{1}{4}\)

 

\(\frac{25}{4}\)

 

\(6\frac{1}{4}\)

 

\(6.25\)

 

The short way:

 

\((2+\frac{1}{2})^2\)

 

\((\frac{4}{2}+\frac{1}{2})^2\)

 

\((\frac{5}{2})^2\)

 

\(\frac{5^2}{2^2}\)

 

\(\frac{25}{2^2}\)

 

\(\frac{25}{4}\)

 

\(6\frac{1}{4}\)

 

\(6.25\)

 Jun 16, 2016

1 Online Users

avatar