From the figure shown below, DE is the diameter of circle A and BC is the radius of circle B. If DE = 60 cm and AC = 10 cm, find the area of the shaded region.

From the figure shown below, DE is the diameter of circle A and BC is the radius of circle B. If DE = 60 cm and AC = 10 cm, find the area of the shaded region
$$h=\overline{AC}=10~\rm{cm}
\qquad r_{A} = \frac{ \overline{DE} }{2}= 30~\rm{cm}
\qquad r_{B} = \overline{CB} \\\\
r_A^2 = h\cdot(2\cdot r_B-h)\qquad \Rightarrow\qquad
r_B = \frac{h+\dfrac{r_A^2}{h} }{2}=\frac {10+90}{2}= 50 ~\rm{cm}\\\\
\small{\text{Angle DBE $=B
\qquad B\ensurement{^{\circ}} = 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} $}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{B\ensurement{^{\circ}} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} } - r_A\cdot(r_B - h)
\right]
$}}$$
$$\small{ A_{Blue}= \pi\cdot r_B^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot r_A^2}{2}+ r_A\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{30}{50} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot 30^2}{2}+ 30\cdot(50 - 10)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2\cdot
0.7951672353008667 - \pi \frac{\cdot 30^2}{2}+ 1200\right]
$}} \\\\
\small{ A_{Blue}= 6031.5121678758663628914 ~\rm{cm^2}
$}}\\\\
A_{Blue} \approx 6031.5122 ~\rm{cm^2}$$
![]()
I'll try this one......!!!
We need to find the radius of the large circle.BC = BD = BE
Now....DAC is a right triangle with DC = √[30^2 + 10^2] = 10√10 cm
And by the Law of Sines .... sin90 / 10√10 = sin DCA /30 .....sin-1 (3/√10) = DCA = DCB = about 71.565°......and in triangle DBC, DB = CB....so angle DBC = 180 - (2)71.565 = about 36.87°
And by the Law of Sines, again ........ 10√10 / sin 36.87 = DB / sin 71.565
So DB = (10√10) sin71.565 / sin 36.87 = 50 cm
So the area of the big circle is 2500pi cm^2
And 1/2 of the area of the small circle = (1/2)(30)^2 pi = 450pi cm^2
And to find the area bound by DCEA, we have area of sector BDE - area of triangle BDE = (1/2)(50)^2 (1.287002217586568 ) - (1/2)(60)(40) = 1608.75277198321 -1200 = 408.75277198321 cm^2
So....the shaded area = area of the big circle - (1/2) area of the small circle - area of DCEA =
[ 2500pi - 450pi - 408.75277198321 ) = about 6031.51 cm^2
Don't know if it's correct or not.......
![]()
LOL!!!....remember......in olden days...just because two people agreed that the Earth was flat.....didn't necessarily make it so........
![]()
From the figure shown below, DE is the diameter of circle A and BC is the radius of circle B. If DE = 60 cm and AC = 10 cm, find the area of the shaded region
$$h=\overline{AC}=10~\rm{cm}
\qquad r_{A} = \frac{ \overline{DE} }{2}= 30~\rm{cm}
\qquad r_{B} = \overline{CB} \\\\
r_A^2 = h\cdot(2\cdot r_B-h)\qquad \Rightarrow\qquad
r_B = \frac{h+\dfrac{r_A^2}{h} }{2}=\frac {10+90}{2}= 50 ~\rm{cm}\\\\
\small{\text{Angle DBE $=B
\qquad B\ensurement{^{\circ}} = 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} $}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{B\ensurement{^{\circ}} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} } - r_A\cdot(r_B - h)
\right]
$}}$$
$$\small{ A_{Blue}= \pi\cdot r_B^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot r_A^2}{2}+ r_A\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{30}{50} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot 30^2}{2}+ 30\cdot(50 - 10)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2\cdot
0.7951672353008667 - \pi \frac{\cdot 30^2}{2}+ 1200\right]
$}} \\\\
\small{ A_{Blue}= 6031.5121678758663628914 ~\rm{cm^2}
$}}\\\\
A_{Blue} \approx 6031.5122 ~\rm{cm^2}$$
![]()
Are three wise men enough to convince you Chris ? :)
I have added this to the "Great Answers To Learn From" sticky thread Thanks Guys ![]()