From the figure shown below, DE is the diameter of circle A and BC is the radius of circle B. If DE = 60 cm and AC = 10 cm, find the area of the shaded region.
From the figure shown below, DE is the diameter of circle A and BC is the radius of circle B. If DE = 60 cm and AC = 10 cm, find the area of the shaded region
$$h=\overline{AC}=10~\rm{cm}
\qquad r_{A} = \frac{ \overline{DE} }{2}= 30~\rm{cm}
\qquad r_{B} = \overline{CB} \\\\
r_A^2 = h\cdot(2\cdot r_B-h)\qquad \Rightarrow\qquad
r_B = \frac{h+\dfrac{r_A^2}{h} }{2}=\frac {10+90}{2}= 50 ~\rm{cm}\\\\
\small{\text{Angle DBE $=B
\qquad B\ensurement{^{\circ}} = 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} $}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{B\ensurement{^{\circ}} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} } - r_A\cdot(r_B - h)
\right]
$}}$$
$$\small{ A_{Blue}= \pi\cdot r_B^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot r_A^2}{2}+ r_A\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{30}{50} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot 30^2}{2}+ 30\cdot(50 - 10)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2\cdot
0.7951672353008667 - \pi \frac{\cdot 30^2}{2}+ 1200\right]
$}} \\\\
\small{ A_{Blue}= 6031.5121678758663628914 ~\rm{cm^2}
$}}\\\\
A_{Blue} \approx 6031.5122 ~\rm{cm^2}$$
I'll try this one......!!!
We need to find the radius of the large circle.BC = BD = BE
Now....DAC is a right triangle with DC = √[30^2 + 10^2] = 10√10 cm
And by the Law of Sines .... sin90 / 10√10 = sin DCA /30 .....sin-1 (3/√10) = DCA = DCB = about 71.565°......and in triangle DBC, DB = CB....so angle DBC = 180 - (2)71.565 = about 36.87°
And by the Law of Sines, again ........ 10√10 / sin 36.87 = DB / sin 71.565
So DB = (10√10) sin71.565 / sin 36.87 = 50 cm
So the area of the big circle is 2500pi cm^2
And 1/2 of the area of the small circle = (1/2)(30)^2 pi = 450pi cm^2
And to find the area bound by DCEA, we have area of sector BDE - area of triangle BDE = (1/2)(50)^2 (1.287002217586568 ) - (1/2)(60)(40) = 1608.75277198321 -1200 = 408.75277198321 cm^2
So....the shaded area = area of the big circle - (1/2) area of the small circle - area of DCEA =
[ 2500pi - 450pi - 408.75277198321 ) = about 6031.51 cm^2
Don't know if it's correct or not.......
LOL!!!....remember......in olden days...just because two people agreed that the Earth was flat.....didn't necessarily make it so........
From the figure shown below, DE is the diameter of circle A and BC is the radius of circle B. If DE = 60 cm and AC = 10 cm, find the area of the shaded region
$$h=\overline{AC}=10~\rm{cm}
\qquad r_{A} = \frac{ \overline{DE} }{2}= 30~\rm{cm}
\qquad r_{B} = \overline{CB} \\\\
r_A^2 = h\cdot(2\cdot r_B-h)\qquad \Rightarrow\qquad
r_B = \frac{h+\dfrac{r_A^2}{h} }{2}=\frac {10+90}{2}= 50 ~\rm{cm}\\\\
\small{\text{Angle DBE $=B
\qquad B\ensurement{^{\circ}} = 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} $}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{B\ensurement{^{\circ}} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} } - r_A\cdot(r_B - h)
\right]
$}}$$
$$\small{ A_{Blue}= \pi\cdot r_B^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot r_A^2}{2}+ r_A\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{30}{50} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot 30^2}{2}+ 30\cdot(50 - 10)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2\cdot
0.7951672353008667 - \pi \frac{\cdot 30^2}{2}+ 1200\right]
$}} \\\\
\small{ A_{Blue}= 6031.5121678758663628914 ~\rm{cm^2}
$}}\\\\
A_{Blue} \approx 6031.5122 ~\rm{cm^2}$$
Are three wise men enough to convince you Chris ? :)
I have added this to the "Great Answers To Learn From" sticky thread Thanks Guys