We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
173
5
avatar+90 

Given f(x) = 2/3(x-5), determine the value of the following:

a) f^-1(-2)                   b) f^-1(a+1) - f^-1(a)

 

c) [ f^-1(a)-f^-1(b) ] / a-b

 

the process is most important to me.. please don't use anything more complicated than inverse funtions

also all the f^-1 are inverse functions

THANKS!!

 Jan 9, 2019
 #1
avatar+101798 
+2

Let's write  y = (2/3) ( x - 5)       multiply both sides by 3/2

 

(3/2)y =  x - 5       add 5 to both sides

 

(3/2)y + 5 =  x        "swap" x and y

 

(3/2)x + 5   =  y  = f-1(x)       this is the inverse

 

 

 

So

 

a) f-1 (-2)   =  (3/2)(-2) + 5  =  - 3 + 5  =  2

 

b)  f-1 ( a + 1) - f-1 ( a)  =   [ (3/2)(a + 1)   + 5 ] - [ (3/2)a + 5 ]  = 3/2

 

c )  [  f-1(a)  - f-1(b) ] / [a - b]  =  (  [ (3/2)(a + 5]  -  (3/2)(b) + 5] / [ a - b]  =

 

[ (3/2) (a - b) ] / [ a - b ]  =    3/2

 

 

 

cool cool cool

 Jan 9, 2019
 #2
avatar+90 
+1

Hey CPhill, thanks for the help!

I still have one question based on your work : )

Here is the work:

[  f-1(a)  - f-1(b) ] / [a - b]  =  (  [ (3/2)(a + 5]  -  (3/2)(b) + 5] / [ a - b]  =

 

[ (3/2) (a - b) ] / [ a - b ]  =    3/2

 

I don't understand the bolded out part, as in how you went from [ (3/2)(a + 5]  -  (3/2)(b) + 5] / [ a - b] to the next part..

Could you please further explain your steps, I am a little confused about that

Drazil  Jan 9, 2019
 #3
avatar+101798 
+2

OK.....let's take it from here

 

( [ (3/2) (a) +  5 ]  -  [ (3/2) (b) + 5 ] )  / [ a - b ]  =

 

[ (3/2)a + 5 - (3/2)b - 5 ]  / [ a - b ]  =

 

[ (3/2) a - (3/2)(b)] / [ a - b]  =

 

 (3/2) (a - b) / ( a - b)  =

 

3/2

 

I think I forgot to close the parentheses  on the (a) term above....sorry....!!! 

 

cool cool cool

CPhill  Jan 9, 2019
edited by CPhill  Jan 9, 2019
edited by CPhill  Jan 9, 2019
 #4
avatar+90 
+1

Yeah, I was a little confused. All good, thanks!

Drazil  Jan 9, 2019
 #5
avatar+101798 
0

No prob....!!!

 

 

cool cool cool

CPhill  Jan 9, 2019

2 Online Users