+0  
 
0
167
1
avatar

 

Let AB be a diameter of a circle, and let C be a point on the circle such that AC=8 and BC=14 The angle bisector of ACB intersects the circle at point M Find CM.

 Dec 15, 2022
 #1
avatar+2196 
0

 

Let AB be a diameter of a circle, and let C be a point on the circle such that AC=8 and BC=14 The angle bisector of ACB intersects the circle at point M Find CM.     

 

Angle ACB is subtended by AB, which is a diameter of the circle, therefore is 90o.     

Pythagoras' Theorem will determine AB which is the hypotenuse of a right triangle.     

 

AB2  =  AC2 + BC2    

AB2  =  82 + 142  =  260     

AB  =  sqrt(260)     

 

Since CM bisects the 90o angle subtended by the diameter, it passes

through the center of the circle, thus becoming a diameter itself.     

 

And so, being a diameter . . . CM = sqrt(260)     

.     

 Aug 11, 2025

0 Online Users