+0  
 
0
189
1
avatar

In any isosceles triangle ABC with AB = AC, the altitude AD bisects the base BC so that BD = DC. If AB = AC = 25 and BC = 18, then determine the length of the altitude .

 Nov 1, 2022
 #1
avatar+2264 
0

 

In any isosceles triangle ABC with AB = AC, the altitude AD bisects the base BC so that BD = DC. If AB = AC = 25 and BC = 18, then determine the length of the altitude      

 

Per Pythagoras   c2 = a2 + b2  from which —>>   a2 = c2 – b2     

 

In this problem  a = altitude     

                          b = 9 (half the base)     

                          c = 25 (side of triangle)      

 

(Altitude)2  =  252 – 92     

                  =  625 – 81     

                  =  544     

 

Altitude      =  sqrt(544)     

                  =  16 • sqrt(34)     

.     

 Aug 22, 2025

4 Online Users

avatar