+0  
 
0
998
2
avatar

Given that (a-b)(a+b)=14ab-2b2

Prove Log2(a+b)=2+{Log2(ab)}/2

 Mar 29, 2016
 #1
avatar+33661 
+5

As follows:

 

proof

.

 Mar 29, 2016
 #2
avatar+130511 
0

We are given that:

 

(a-b)(a+b)=14ab-2b^2       expand on the left

 

a^2 - b^2  = 14ab - 2b^2     add 2b^2  to both sides

 

a^2 + b^2  = 14ab        divide both sides by 14

 

ab =  [ a^2 + b^2] / 14      (1)

 

So, prove that

 

log2(a + b)  = 2 + log2(ab)/2 is true    [let this be (2) ]

 

log2(a + b)  = 2 + log2(ab)/2       multiply both sides by 2

 

log2(a + b)  = 4 + log2(ab)/2          write 4 as log2(16)

 

2log2(a + b)  = log2(16) + log2 [(a^2 + b^2) / 14]

 

log2(a + b)^2  = log2 [ (16/14)(a^2 + b^2) ]     now,  we can forget the logs

 

(a + b)^2  = ((16/14)(a^2 + b^2)           [16/14  = 8/7]

 

a^2 + 2ab + b^2  = (8/7)a^2 + (8/7)b^2       subtract a^2, b^2  from both sides

 

2ab = (1/7)a^2 + (1/7)b^2

 

2ab  = [a^2 + b^2]/7    divide both sides by 2

 

ab = [a^2 + b^2] / 14        which equals (1) and which was assumed true, so (2) must be true, as well

 

 

 

cool cool cool

 Mar 29, 2016

0 Online Users