Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
58
5
avatar+7 

The diagram shows two chords that are parallel. What is the length of the chord that lies halfway between them?

 

 Aug 10, 2023
 #2
avatar+2 
0

OP = x

OB = OD = OF = R

PB = 9v RF = 7 PRD = 10

Rv = 9v + xv and Rv = 7v + (10 - x)v

both R equal 9v + x= 7v + 10v - 20x + xv

                    x = (7v + 10- 9v)/20

                       x = 68/20

                       x = 3.4

                      OP = 3.4, O9 = 5 - 3.4 = 1.6

                                       R = 9vxv

                                           = 9v(3.4)v

                                           = 92.56

9D = (92.56v(1.6)v

     = 92.56v2.56

    = 90

CD = 290

Now Checking
 

                       OR = OQ + QR

                              = 1.6 + 5 = 6.6

                 OF = R = 92.56

           RF = 92.5643.56=49=7

 

So, own Soln is correct:


 

The length of the chord that lies halfway between them is 2√90  units. 

 Aug 11, 2023
 #3
avatar+189 
0

In order to ease solving process, I have created a diagram that represents the situation to scale. The diagram is below with points I have labeled arbitrarily where O is the center of the circle.

 

 

Since O is the center of the circle, OC = OJ = r, the radius of the circle. In addition, we know that ¯BH is a perpendicular bisector of the chords, so BC=9 and HJ=7. Also, we can label BO=BO and OH=10BO. Putting all this information together enables us to find the radius of the circle.

r2=92+BO2r2=72+(10BO)281+BO2=49+10020BO+BO220BO=68BO=175r2=81+(175)2=202525+28925=231425

We know that BO = 5, so OE=5BO=5175=85. We can apply Pythagorean's Theorem one more time to find DF, the length of the desired chord.

r2=OE2+EF2231425=(85)2+EF2EF2=2314256425EF2=90EF=310DF=2EF=61018.9737

 Aug 11, 2023
 #5
avatar+7 
0

Thank you so much for your help!

ImAMathKid  Aug 11, 2023

2 Online Users