+0  
 
+1
1
2
avatar+206 

The equation

                             \(\frac{ax^2 - 24x + b}{x - 1} = x^2 + x\)

 

holds for exactly two real values of \(x\) and their sum is \(12\). Find \(a-b.\)

 
 Jul 2, 2025
 #1
avatar+22 
0

To solve (ax^2 - 24x + b)/(x - 1) = x^2 + x, which holds for two real x-values summing to 12, and find a - b:

Multiply by x - 1:

ax^2 - 24x + b = (x^2 + x)(x - 1)

Expand:

(x^2 + x)(x - 1) = x^3 - x

So:

ax^2 - 24x + b = x^3 - x

Move terms:

x^3 - x - (ax^2 - 24x + b) = x^3 - ax^2 + 23x - b = 0

Cubic:

x^3 - ax^2 + 23x - b = 0

Assume roots p, p, q (p double root). Vieta's gives:

2p + q = a

Distinct roots p, q sum to 12:

p + q = 12

So, q = 12 - p. Cubic as (x - p)^2 (x - q):

(x - p)^2 (x - q) = x^3 - (2p + q)x^2 + (p^2 + 2pq)x - p^2 q

Compare:

x^2: -(2p + q) = -a, so a = 2p + q

x: p^2 + 2pq = 23

Constant: -p^2 q = -b, so b = p^2 q

Solve:

p^2 + 2pq = 23

With q = 12 - p:

p^2 + 2p(12 - p) = -p^2 + 24p = 23

p^2 - 24p + 23 = 0

p = (24 ± sqrt(576 - 92))/2 = (24 ± 22)/2

p = 23 or 1

Take p = 1:

q = 12 - 1 = 11

a = 2 * 1 + 11 = 13

b = 1^2 * 11 = 11

a - b = 13 - 11 = 2

Cubic x^3 - 13x^2 + 23x - 11 = 0 has roots x = 1 (double), x = 11, summing to 12.

Answer: a - b = 2

 Jul 2, 2025

0 Online Users