+0  
 
0
51
7
avatar+717 

One number is four times another, and the sum of the two numbers is 155. What are the two numbers?

SmartMathMan  Nov 12, 2018
 #1
avatar+316 
+2

We have 2 numbers \(x,y\)

\(x=4y \) (1)

\(x+y=155 \)<=> We are replacing the (1) => \(4y+y=155\) <=> \(5y=155\) <=> \(y=31\)

so we are replacing in the (1) \(x=4\times31\)<=> \(x=124\)

so the two numbers? is \(31\) and \(124\)

 

Hope this helps!

Dimitristhym  Nov 12, 2018
edited by Dimitristhym  Nov 12, 2018
 #7
avatar+717 
+1

thx dimitristhyn

SmartMathMan  Nov 12, 2018
 #2
avatar
0

number 1 = x, number 2 = 155-x.

 

We have the equation $x = 4(155-x)$, which simplifies into $x = 620 - 4x$. Isolating x, we have $5x=620$, which simplifies into $x = 124$. The second number is $155-124$, which is $31$. Done, you are welcome. 

Guest Nov 12, 2018
edited by Guest  Nov 12, 2018
 #3
avatar+717 
0

sorry im confused

SmartMathMan  Nov 12, 2018
 #4
avatar+316 
+2

Sorry if you don't understand my solution sent me message to explain it step by step 

Dimitristhym  Nov 12, 2018
edited by Dimitristhym  Nov 12, 2018
 #6
avatar+92787 
+1

Thanks for that solution,  Dimitristhym.......!!!!

 

 

cool cool cool

CPhill  Nov 12, 2018
 #5
avatar+92787 
+2

Let the smaller number   = N

The greater number  = 4 times N   = 4N

 

And we know that 

 

N + 4N   = 155

 

5N    = 155      divide both sides by 5

 

N =  31     [ the smaller number ]

 

And the larger number is  4 ( 31)  =  124

 

 

cool cool cool

CPhill  Nov 12, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.