+0  
 
0
998
7
avatar+1443 

One number is four times another, and the sum of the two numbers is 155. What are the two numbers?

 Nov 12, 2018
 #1
avatar+343 
+1

We have 2 numbers \(x,y\)

\(x=4y \) (1)

\(x+y=155 \)<=> We are replacing the (1) => \(4y+y=155\) <=> \(5y=155\) <=> \(y=31\)

so we are replacing in the (1) \(x=4\times31\)<=> \(x=124\)

so the two numbers? is \(31\) and \(124\)

 

Hope this helps!

 Nov 12, 2018
edited by Dimitristhym  Nov 12, 2018
 #7
avatar+1443 
+1

thx dimitristhyn

SmartMathMan  Nov 12, 2018
 #2
avatar
0

number 1 = x, number 2 = 155-x.

 

We have the equation $x = 4(155-x)$, which simplifies into $x = 620 - 4x$. Isolating x, we have $5x=620$, which simplifies into $x = 124$. The second number is $155-124$, which is $31$. Done, you are welcome. 

 Nov 12, 2018
edited by Guest  Nov 12, 2018
 #3
avatar+1443 
0

sorry im confused

 Nov 12, 2018
 #4
avatar+343 
+1

Sorry if you don't understand my solution sent me message to explain it step by step 

Dimitristhym  Nov 12, 2018
edited by Dimitristhym  Nov 12, 2018
 #6
avatar+129852 
+1

Thanks for that solution,  Dimitristhym.......!!!!

 

 

cool cool cool

CPhill  Nov 12, 2018
 #5
avatar+129852 
+2

Let the smaller number   = N

The greater number  = 4 times N   = 4N

 

And we know that 

 

N + 4N   = 155

 

5N    = 155      divide both sides by 5

 

N =  31     [ the smaller number ]

 

And the larger number is  4 ( 31)  =  124

 

 

cool cool cool

 Nov 12, 2018

3 Online Users