+0  
 
0
265
5
avatar+3039 

How many integers n are there such that the quantity \(\lvert 2n^2 + 23n + 11 \rvert\) is prime?

tertre  Dec 29, 2017
 #1
avatar+88899 
+2

Not totally sure about this...but.....here's my best attempt...

 

abs [ 2n^2  + 23n   + 11 ]   factor

 

abs(2n  + 1) * abs(n + 11)

 

Note that this will  be a possible prime  if either factor  =  ±1 

 

But 2n + 1  will = 1  only when  n  = 0.....and the other factor will = abs ( 11 )  = 11

So....when  n = 0, the result will be prime, i.e, 11

 

And 2n + 1  will equal  - 1  when  n  = -1.....and the other factor will =  abs(-1  + 11) = 10......but this isn't prime

 

And n + 11  will equal  1  when n  =  -10

And the other factor will  be 2(-10) + 1  =  -19   which is prime for abs (2n + 1) = abs (2*-10 + 1) =

abs(-19)  =  19

 

And  n + 11  will =  - 1  when n  =  -12  ....so abs (-12 + 11)  = abs(-1)  =  1

And the other factor will be  abs (2(-12) + 1)  =  abs (-23)  =  23

So.....this will be prime  when n   = -12

 

So.....the  integers producing prime results  for  abs [ 2n^2  + 23n   + 11 ]  are 

n = 0 , n  = -10 and n = -12

 

EDITED ANSWER.....still don't know if it's correct, or not....!!!!!!

 

 

cool cool cool

CPhill  Dec 29, 2017
edited by CPhill  Dec 30, 2017
 #2
avatar+553 
+1

hmm, i'm getting something different

ant101  Dec 29, 2017
 #3
avatar+139 
+2

yes, that's correct @CPhill

azsun  Dec 30, 2017
 #4
avatar+139 
+3

We first note that \(2n^2 + 23n + 11\) factors as \((2n + 1)(n+ 11)\) . (We can find these factors using the rational root theorem.) Thus we have \( \lvert 2n^2 + 23n + 11 \rvert = \lvert 2n + 1 \rvert \cdot \lvert n + 11 \rvert . \)Now, each of the factors on the right hand side of this equation is an integer. It follows that the left hand side is a prime number if and only if one of the right hand factors is 1 and the other one is a prime number. Thus we must either have \(2n + 1 = \pm 1\) , or \(n +11 = \pm 1\). We consider these cases separately.

If 2n+1, then n=0, and n+11=11, which is prime. Thus this value of n works.

If 2n+1=-1 , then n=-1, and n+11=10 , which is not prime. Therefore we have no solution in this case.

If n+11=1 , then n=-10 , so 2n+1=-19 . Since 19 is prime, we obtain a valid solution in this case.

Finally, if n+11=-1, then n=-12 , and 2n+1=-23. Since 23 is prime, this value of n works.

Thus there are exactly \(\boxed{3}\) values of \(n\) that work: 0, \(-10\), and \(-12\) ; and these give the prime numbers 11, 19, and 23.

azsun  Dec 30, 2017
 #5
avatar+88899 
+1

Thanks, azsun......I  hope we're correct....LOL!!!

 

 

cool cool cool

CPhill  Dec 31, 2017

29 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.