We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
240
1
avatar+814 

Let \(f(x)=x+5\) and let \(g(x)=x^2+1\). Let  \(p(x)=g(x)+f(x)\)and let \(q(x)=g(x)-f(x)\). Find \(p(x)\cdot q(x)\).

 

Help please!

 Aug 1, 2018

Best Answer 

 #1
avatar+22861 
+2

Let
\(f(x)=x+5\)
and let
\(g(x)=x^2+1\).
Let
\(p(x)=g(x)+f(x)\)
and let
\(q(x)=g(x)-f(x)\).
Find
\(p(x)\cdot q(x)\).

 

\(\begin{array}{|rcll|} \hline p(x)\cdot q(x) &=& \Big( g(x)+f(x) \Big) \Big( g(x)-f(x) \Big) \\ &=& [g(x)]^2-[f(x)]^2 \\ &=& (x^2+1)^2-(x+5)^2 \\ &=& x^4+2x^2+1 -(x^2+10x+25) \\ &=& x^4+2x^2+1 -x^2-10x-25 \\ &\mathbf{=}& \mathbf{x^4+x^2-10x-24} \\ \hline \end{array}\)

 

laugh

 Aug 1, 2018
 #1
avatar+22861 
+2
Best Answer

Let
\(f(x)=x+5\)
and let
\(g(x)=x^2+1\).
Let
\(p(x)=g(x)+f(x)\)
and let
\(q(x)=g(x)-f(x)\).
Find
\(p(x)\cdot q(x)\).

 

\(\begin{array}{|rcll|} \hline p(x)\cdot q(x) &=& \Big( g(x)+f(x) \Big) \Big( g(x)-f(x) \Big) \\ &=& [g(x)]^2-[f(x)]^2 \\ &=& (x^2+1)^2-(x+5)^2 \\ &=& x^4+2x^2+1 -(x^2+10x+25) \\ &=& x^4+2x^2+1 -x^2-10x-25 \\ &\mathbf{=}& \mathbf{x^4+x^2-10x-24} \\ \hline \end{array}\)

 

laugh

heureka Aug 1, 2018

8 Online Users