+0  
 
0
39
1
avatar

I rlly need help with these 3 problems asap. tysm to who ever will help me laugh

 

1: A dilation with scale factor -3 maps X to \(X'\) and Y to \(Y'\) Given \(X'Y'=2,\) find XY

 

2: In triangle ABC, AB = BC, and CA=6

 - Triangle ABC is first rotated clockwise about A for \(90^\circ\) to triangle \(AB_1C_1\)

 - Triangle \(AB_1C_1\) is then reflected over \(\overline{B_1C_1}\) to triangle \(A_1B_1C_1\)

 - Triangle \(A_1B_1C_1\) is then translated 8 units to the right to triangle \(A_2B_2C_2\) 

 - Triangle \(A_2B_2C_2\) is then dilated about A to triangle \(A_3B_3C_3\) with scale factor -4

What is the perimeter of triangle \(A_3B_3C_3 ?\)

 

3: A reflection maps A to B and C to C If AB = 12 then what is the shortest possible length of 

\(\overline{AC}?\)

 May 21, 2022
 #1
avatar
0

1. XY = 6.

 

2. The perimeter of triangle A_3 B_3 C_3 is 30.

 May 21, 2022

15 Online Users