Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
921
2
avatar+96 

a^2 - b^2 = 8 and a*b = 2, find a^4 + b^4.

 Aug 25, 2018

Best Answer 

 #1
avatar+399 
+2

We have a2b2=8, which we can square both sides to get a4+b42a2b2=82. Since ab=2, we can square both sides again to get a2b2=22. Then, we can subsitute that value into the equation; a4+b42(4)=82 -> a4+b48=64 -> a4+b4=72.

 

- Daisy

 Aug 25, 2018
 #1
avatar+399 
+2
Best Answer

We have a2b2=8, which we can square both sides to get a4+b42a2b2=82. Since ab=2, we can square both sides again to get a2b2=22. Then, we can subsitute that value into the equation; a4+b42(4)=82 -> a4+b48=64 -> a4+b4=72.

 

- Daisy

dierdurst Aug 25, 2018
 #2
avatar+130466 
+2

a^2  - b^2   = 8   and  ab  = 2 

 

So 

 

(a^2 - b^2) (a^2 - b^2)  =  (8) * (8)

 

a^4  - 2(ab)^2 + b^4  = 64

 

a^4 + b^4  = 64 + 2(ab)^2

 

a^4 + b^4  =  64 + 2(2)^2

 

a^4 + b^4  = 64 + 8

 

a^4 + b^4  = 72

 

 

cool cool cool

 Aug 25, 2018

3 Online Users