We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
192
2
avatar+96 

a^2 - b^2 = 8 and a*b = 2, find a^4 + b^4.

 Aug 25, 2018

Best Answer 

 #1
avatar+391 
+2

We have \({a}^{2} - {b}^{2} = 8\), which we can square both sides to get \(a^4 + b^4 - 2a^2b^2 = 8^2\). Since \(ab = 2\), we can square both sides again to get \(a^2b^2 = 2^2\). Then, we can subsitute that value into the equation; \(a^4 + b^4 - 2(4) = 8^2\) -> \(a^4 + b^4 - 8 = 64\) -> \(a^4 + b^4 = 72\).

 

- Daisy

 Aug 25, 2018
 #1
avatar+391 
+2
Best Answer

We have \({a}^{2} - {b}^{2} = 8\), which we can square both sides to get \(a^4 + b^4 - 2a^2b^2 = 8^2\). Since \(ab = 2\), we can square both sides again to get \(a^2b^2 = 2^2\). Then, we can subsitute that value into the equation; \(a^4 + b^4 - 2(4) = 8^2\) -> \(a^4 + b^4 - 8 = 64\) -> \(a^4 + b^4 = 72\).

 

- Daisy

dierdurst Aug 25, 2018
 #2
avatar+100587 
+2

a^2  - b^2   = 8   and  ab  = 2 

 

So 

 

(a^2 - b^2) (a^2 - b^2)  =  (8) * (8)

 

a^4  - 2(ab)^2 + b^4  = 64

 

a^4 + b^4  = 64 + 2(ab)^2

 

a^4 + b^4  =  64 + 2(2)^2

 

a^4 + b^4  = 64 + 8

 

a^4 + b^4  = 72

 

 

cool cool cool

 Aug 25, 2018

7 Online Users

avatar