We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
359
3
avatar+874 

1. What is the smallest whole number that has a remainder of 1 when divided by 4, a remainder of 1 when divided by 3, and a remainder of 2 when divided by 5?

 

2. What is the minimum value of the expression \(2x^2+3y^2+8x-24y+62\) for real  \(x\) and \(y\)?

 May 6, 2018
 #1
avatar
0

1) Try 37.

 May 6, 2018
 #2
avatar+22554 
0

1. What is the smallest whole number that has
a remainder of 1 when divided by 4,
a remainder of 1 when divided by 3,
and a remainder of 2 when divided by 5?

 

\(\begin{array}{|rcll|} \hline x &\equiv& 1 \pmod{4} \\ x &\equiv& 1 \pmod{3} \\ x &\equiv& 2 \pmod{5} \\ \hline \end{array}\)

 

\(\small{ \begin{array}{|rcll|} \hline x &=& 1\cdot 3 \cdot 5 \cdot \frac{1}{3 \cdot 5}\pmod{4} + 1\cdot 4 \cdot 5 \cdot \frac{1}{4 \cdot 5}\pmod{3} + 2\cdot 4 \cdot 3 \cdot \frac{1}{4 \cdot 3}\pmod{5} + 4\cdot 3 \cdot 5 \cdot n \ |\ n\in Z \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{3 \cdot 5}\pmod{4} \\ &\equiv& (3 \cdot 5 )^{\varphi(4)-1} \pmod{4} \quad & | \quad \varphi(4) =4\cdot (1-\frac12) = 2 \\ &\equiv& 15^{1} \pmod{4} \\ &\equiv& 15 \pmod{4} \\ &\equiv& -1 \pmod{4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{4 \cdot 5}\pmod{3} \\ &\equiv& (4 \cdot 5 )^{\varphi(3)-1} \pmod{3} \quad & | \quad \varphi(3) = 2 \\ &\equiv& 20^{1} \pmod{3} \\ &\equiv& 20 \pmod{3} \\ &\equiv& -1 \pmod{3} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{4 \cdot 3}\pmod{5} \\ &\equiv& (3 \cdot 5 )^{\varphi(4)-1} \pmod{4} \quad & | \quad \varphi(4) =4\cdot (1-\frac12) = 2 \\ &\equiv& 15^{3} \pmod{5} \quad & | \quad 12 \pmod{5} \equiv 2 \pmod{5} \\ &\equiv& 2^{3} \pmod{5} \\ &\equiv& 8 \pmod{5} \\ &\equiv& 3 \pmod{5} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x &=& 15 \cdot (-1) + 20 \cdot (-1) + 24 \cdot 3 + 60 n \quad|\quad n\in Z \\ x &=& -15-20+72+60n \quad|\quad n\in Z \\ \mathbf{x} & \mathbf{=} & \mathbf{37+60n \quad|\quad n\in Z } \\ \hline \end{array}\)

 

\(\mathbf{x_{min} = 37 \quad | \quad n=0} \)

 

The smallest whole number is 37

 

laugh

 May 7, 2018
 #3
avatar+22554 
0

2. What is the minimum value of the expression 

2x^2+3y^2+8x-24y+62 for real  \(x\)  and  \(y\)?

 

\(\begin{array}{|rcll|} \hline && 2x^2+3y^2+8x-24y+62 \\ &=& 2x^2+8x +3y^2-24y+62 \\ &=& 2(x^2+4x) +3(y^2-8y) + 62 \\ &=& 2[(x+2)^2-4] +3[(y-4)^2-16] + 62 \\ &=& 2(x+2)^2-8 +3(y-4)^2-48 + 62 \\ &=& 2(x+2)^2+3(y-4)^2-8 -48 + 62 \\ &=& 2(x {\color{red}+2})^2+3(y{\color{red}-4})^2 + 6\\ \hline \end{array}\)

 

We find global minimum:
\(\min\{ 2 x^2 + 3 y^2 + 8 x - 24 y + 62 \} = 6 \quad \text{at} \quad (x, y) = ( -2, 4)\)

 

laugh

 May 7, 2018

15 Online Users

avatar
avatar
avatar