+0  
 
+1
45
3
avatar+474 

1. What is the smallest whole number that has a remainder of 1 when divided by 4, a remainder of 1 when divided by 3, and a remainder of 2 when divided by 5?

 

2. What is the minimum value of the expression \(2x^2+3y^2+8x-24y+62\) for real  \(x\) and \(y\)?

ant101  May 6, 2018
Sort: 

3+0 Answers

 #1
avatar
0

1) Try 37.

Guest May 6, 2018
 #2
avatar+19344 
0

1. What is the smallest whole number that has
a remainder of 1 when divided by 4,
a remainder of 1 when divided by 3,
and a remainder of 2 when divided by 5?

 

\(\begin{array}{|rcll|} \hline x &\equiv& 1 \pmod{4} \\ x &\equiv& 1 \pmod{3} \\ x &\equiv& 2 \pmod{5} \\ \hline \end{array}\)

 

\(\small{ \begin{array}{|rcll|} \hline x &=& 1\cdot 3 \cdot 5 \cdot \frac{1}{3 \cdot 5}\pmod{4} + 1\cdot 4 \cdot 5 \cdot \frac{1}{4 \cdot 5}\pmod{3} + 2\cdot 4 \cdot 3 \cdot \frac{1}{4 \cdot 3}\pmod{5} + 4\cdot 3 \cdot 5 \cdot n \ |\ n\in Z \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{3 \cdot 5}\pmod{4} \\ &\equiv& (3 \cdot 5 )^{\varphi(4)-1} \pmod{4} \quad & | \quad \varphi(4) =4\cdot (1-\frac12) = 2 \\ &\equiv& 15^{1} \pmod{4} \\ &\equiv& 15 \pmod{4} \\ &\equiv& -1 \pmod{4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{4 \cdot 5}\pmod{3} \\ &\equiv& (4 \cdot 5 )^{\varphi(3)-1} \pmod{3} \quad & | \quad \varphi(3) = 2 \\ &\equiv& 20^{1} \pmod{3} \\ &\equiv& 20 \pmod{3} \\ &\equiv& -1 \pmod{3} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{4 \cdot 3}\pmod{5} \\ &\equiv& (3 \cdot 5 )^{\varphi(4)-1} \pmod{4} \quad & | \quad \varphi(4) =4\cdot (1-\frac12) = 2 \\ &\equiv& 15^{3} \pmod{5} \quad & | \quad 12 \pmod{5} \equiv 2 \pmod{5} \\ &\equiv& 2^{3} \pmod{5} \\ &\equiv& 8 \pmod{5} \\ &\equiv& 3 \pmod{5} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x &=& 15 \cdot (-1) + 20 \cdot (-1) + 24 \cdot 3 + 60 n \quad|\quad n\in Z \\ x &=& -15-20+72+60n \quad|\quad n\in Z \\ \mathbf{x} & \mathbf{=} & \mathbf{37+60n \quad|\quad n\in Z } \\ \hline \end{array}\)

 

\(\mathbf{x_{min} = 37 \quad | \quad n=0} \)

 

The smallest whole number is 37

 

laugh

heureka  May 7, 2018
 #3
avatar+19344 
0

2. What is the minimum value of the expression 

2x^2+3y^2+8x-24y+62 for real  \(x\)  and  \(y\)?

 

\(\begin{array}{|rcll|} \hline && 2x^2+3y^2+8x-24y+62 \\ &=& 2x^2+8x +3y^2-24y+62 \\ &=& 2(x^2+4x) +3(y^2-8y) + 62 \\ &=& 2[(x+2)^2-4] +3[(y-4)^2-16] + 62 \\ &=& 2(x+2)^2-8 +3(y-4)^2-48 + 62 \\ &=& 2(x+2)^2+3(y-4)^2-8 -48 + 62 \\ &=& 2(x {\color{red}+2})^2+3(y{\color{red}-4})^2 + 6\\ \hline \end{array}\)

 

We find global minimum:
\(\min\{ 2 x^2 + 3 y^2 + 8 x - 24 y + 62 \} = 6 \quad \text{at} \quad (x, y) = ( -2, 4)\)

 

laugh

heureka  May 7, 2018

12 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy