+0  
 
+1
89
3
avatar+493 

1. What is the smallest whole number that has a remainder of 1 when divided by 4, a remainder of 1 when divided by 3, and a remainder of 2 when divided by 5?

 

2. What is the minimum value of the expression \(2x^2+3y^2+8x-24y+62\) for real  \(x\) and \(y\)?

ant101  May 6, 2018
 #1
avatar
0

1) Try 37.

Guest May 6, 2018
 #2
avatar+19604 
0

1. What is the smallest whole number that has
a remainder of 1 when divided by 4,
a remainder of 1 when divided by 3,
and a remainder of 2 when divided by 5?

 

\(\begin{array}{|rcll|} \hline x &\equiv& 1 \pmod{4} \\ x &\equiv& 1 \pmod{3} \\ x &\equiv& 2 \pmod{5} \\ \hline \end{array}\)

 

\(\small{ \begin{array}{|rcll|} \hline x &=& 1\cdot 3 \cdot 5 \cdot \frac{1}{3 \cdot 5}\pmod{4} + 1\cdot 4 \cdot 5 \cdot \frac{1}{4 \cdot 5}\pmod{3} + 2\cdot 4 \cdot 3 \cdot \frac{1}{4 \cdot 3}\pmod{5} + 4\cdot 3 \cdot 5 \cdot n \ |\ n\in Z \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{3 \cdot 5}\pmod{4} \\ &\equiv& (3 \cdot 5 )^{\varphi(4)-1} \pmod{4} \quad & | \quad \varphi(4) =4\cdot (1-\frac12) = 2 \\ &\equiv& 15^{1} \pmod{4} \\ &\equiv& 15 \pmod{4} \\ &\equiv& -1 \pmod{4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{4 \cdot 5}\pmod{3} \\ &\equiv& (4 \cdot 5 )^{\varphi(3)-1} \pmod{3} \quad & | \quad \varphi(3) = 2 \\ &\equiv& 20^{1} \pmod{3} \\ &\equiv& 20 \pmod{3} \\ &\equiv& -1 \pmod{3} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \frac{1}{4 \cdot 3}\pmod{5} \\ &\equiv& (3 \cdot 5 )^{\varphi(4)-1} \pmod{4} \quad & | \quad \varphi(4) =4\cdot (1-\frac12) = 2 \\ &\equiv& 15^{3} \pmod{5} \quad & | \quad 12 \pmod{5} \equiv 2 \pmod{5} \\ &\equiv& 2^{3} \pmod{5} \\ &\equiv& 8 \pmod{5} \\ &\equiv& 3 \pmod{5} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x &=& 15 \cdot (-1) + 20 \cdot (-1) + 24 \cdot 3 + 60 n \quad|\quad n\in Z \\ x &=& -15-20+72+60n \quad|\quad n\in Z \\ \mathbf{x} & \mathbf{=} & \mathbf{37+60n \quad|\quad n\in Z } \\ \hline \end{array}\)

 

\(\mathbf{x_{min} = 37 \quad | \quad n=0} \)

 

The smallest whole number is 37

 

laugh

heureka  May 7, 2018
 #3
avatar+19604 
0

2. What is the minimum value of the expression 

2x^2+3y^2+8x-24y+62 for real  \(x\)  and  \(y\)?

 

\(\begin{array}{|rcll|} \hline && 2x^2+3y^2+8x-24y+62 \\ &=& 2x^2+8x +3y^2-24y+62 \\ &=& 2(x^2+4x) +3(y^2-8y) + 62 \\ &=& 2[(x+2)^2-4] +3[(y-4)^2-16] + 62 \\ &=& 2(x+2)^2-8 +3(y-4)^2-48 + 62 \\ &=& 2(x+2)^2+3(y-4)^2-8 -48 + 62 \\ &=& 2(x {\color{red}+2})^2+3(y{\color{red}-4})^2 + 6\\ \hline \end{array}\)

 

We find global minimum:
\(\min\{ 2 x^2 + 3 y^2 + 8 x - 24 y + 62 \} = 6 \quad \text{at} \quad (x, y) = ( -2, 4)\)

 

laugh

heureka  May 7, 2018

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.