Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
604
4
avatar

If x+1y=1 and y+1z=1, what is the value of the product xyz?

 Jan 19, 2021
 #1
avatar+539 
-1

0

 

x=0, y=1, z=0

 Jan 19, 2021
 #2
avatar
0

z cannot equal zero......   1/z    in second equation

 Jan 19, 2021
 #3
avatar+285 
+1

Multiply both sides of the first equation by y and both sides of the second equation by  to obtain z

xy+1=yyz+1=z.

Substituting xy+1 for y in the second equation, we find

(xy+1)z+1=z,

which simplifies to

xyz+z+1=z.

Subtracting z+1 from both sides, we find that xyz=z(z+1)=1.

 Jan 19, 2021
 #4
avatar+130466 
+2

x + 1/y  =  1               y +  1/z  =  1

 

(xy + 1) / y  = 1        (yz  + 1) /  z  = 1

 

xy +  1 =  y              yz +  1  = z

 

xy =  y -1                 1 = z - zy

 

x = (y-1)/y                1 = z ( 1 - y)

 

                                 z  = 1/(1-y)

 

So

 

xyz  =    (y-1) / y  *   y  *  1/(1-y)       =    (y-1)  /  (1-y)  =   -(1-y)  /( 1-y)  =    -1 

 

 

cool cool cool

 Jan 19, 2021

1 Online Users