When a polynomial p(x) is divided by x + 1, the remainder is 5. When p(x) is divided by x + 5, the remainder is -7. Find the remainder when p(x) is divided by (x + 1)(x + 5).
Find the constant b such that \(\left(5x^2-3x+\frac{7}{3}\right)(ax^2+bx+c) = 15x^4 - 14x^3 + 20x^2 - \frac{25}{3}x + \frac{14}{3}\)