+0  
 
0
876
3
avatar+12 

write the next term in this sequence

-1 2 7 14 23...

 Jan 6, 2016

Best Answer 

 #2
avatar
+5

-1, 2, 7, 14, 23, 34, 47, 62, 79, 98, 119, 142, 167, 194, 223, 254, 287=a(n) = n^2 - 2.

 Jan 6, 2016
 #1
avatar+130511 
+5

Notice the pattern :

 

                                                 -1         2           7         14       23            ???

 

Difference between terms              3            5           7          9        11

 

Do you see what the next term  might be  ???

 

 

 

cool cool cool

 Jan 6, 2016
edited by CPhill  Jan 6, 2016
edited by CPhill  Jan 6, 2016
edited by CPhill  Jan 6, 2016
 #2
avatar
+5
Best Answer

-1, 2, 7, 14, 23, 34, 47, 62, 79, 98, 119, 142, 167, 194, 223, 254, 287=a(n) = n^2 - 2.

Guest Jan 6, 2016
 #3
avatar+26400 
+5

write the next term in this sequence

-1 2 7 14 23...

 

\(\begin{array}{lrrrrrrrrrr} & {\color{red}d_0 = -1} && 2 && 7 && 14 && 23 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 3} && 5 && 7 && 9 && 11 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 2} && 2 && 2 && 2 && 2 && \cdots \\ \end{array}\)

 

 


\(\begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } + \binom{n-1}{2}\cdot {\color{red}d_2 }\\ a_n &=& \binom{n-1}{0}\cdot ({\color{red}-1 }) + \binom{n-1}{1}\cdot {\color{red}3} + \binom{n-1}{2}\cdot {\color{red}2}\\ \\ \hline \binom{n-1}{0} &=& 1 \\ \binom{n-1}{1} &=& n-1 \\ \binom{n-1}{2} &=& ( \frac{n-1}{2} ) \cdot ( \frac{n-2}{1} ) \\ \hline \\ a_n &=& ({\color{red}-1 }) + (n-1)\cdot {\color{red}3} + ( \frac{n-1}{2} ) \cdot ( \frac{n-2}{1} )\cdot {\color{red}2}\\ a_n &=& -1 + 3n - 3 + (n-1)(n-2) \\ a_n &=& -1 + 3n - 3 + n^2-2n-n+2 \\ \mathbf{a_n} &=& \mathbf{n^2-2} \\\\ a_6 &=& 6^2-2 = 34\\ a_7 &=& 7^2-2 = 47\\ a_8 &=& 8^2-2 = 62\\ \cdots \end{array}\)

 

laugh

 Jan 7, 2016

2 Online Users