Based on the ploynomial remainder theorem, what is the value of the function when x = - 6 ?
f(x) = x^4 + 8x^3 + 10x^2 - 7x + 40
f(-6) = _______
\(f(-6) = (-6)^4 + 8(-6)^3 + 10(-6)^2 - 7(-6) + 40=1296 -1728 + 360 +42 +40 = 10 \)
so \(f(-6)=10\)
\(f(-6) = (-6)^4 + 8(-6)^3 + 10(-6)^2 - 7(-6) + 40=1296 -1728 + 360 +42 +40 = 10 \)
so \(f(-6)=10\)