Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1027
3
avatar+188 

The diagonals of rectangle PQRS intersect at point A. If PS = 10 and RS = 24, then what is cos PAS?

 Nov 18, 2018
 #1
avatar+130475 
+1

P                    Q

 

10       A

 

S       24         R

 

We can use the Pythagorean Theorem to   find PR  =

 

√ [ SR^2 + PS^2]   = √ [ 576 + 100]  = √676  =  26

And  (1/2) of this  = PA  = SA  =  13

 

So.....using the Law of Cosines

 

PS^2  = PA^2 + SA^2  - 2(PA * SA) cos PAS

 

10^2 = 13^2 + 13^2 - 2(13 * 13) cos PAS

 

100 - 2(13)^2

___________  =   cos PAS

  -2 (13^2)

 

 

2(13)^2  - 100

___________   =   cos PAS

   2(13)^2

 

 

338 - 100

________    =    cos PAS

  338 

 

 

238                                119

___    =   cos PAS =     ____

338                                169

 

 

cool cool cool

 Nov 18, 2018
edited by CPhill  Nov 18, 2018
edited by CPhill  Nov 18, 2018
 #2
avatar+188 
0

169 is the answer? How can cos be greater than 1?

 Nov 20, 2018
 #3
avatar+400 
0

You can draw triangle PAS with DS perpendicular(the altitude) to AP. You know PS=10. Let's name the midpoint of PS the letter FPF=5,PA=13, so AF=12. Now, cos PAS=ADAS. We already know AS=13, so we just need to solve for AD. To find AD, we first need to solve for DS, which is one of the altitudes of triangle PAS. We know that the area of a triangle is 12bh, so we can make an equation. 12×10×12=12×13×DS. From this, we get DS=12013. Now, we can use Pythagorean Theorum to find AD122(12013)2=AD2. After calculating this, we can get AD=126913. Now, lets plug this into our fraction. We can get 12691313 which simplifies to 1269169.

 

- Daisy

 Nov 21, 2018

1 Online Users