+0  
 
0
257
2
avatar+280 

I though i got the answer, but i already lost 5 points out of 10, so.

Veteran  Mar 20, 2017
 #1
avatar+92806 
+3

Hi Veteran

 

I will assume that x is a acute angle, is that ok?

Draw a right angled triangle. Mark one acute angle as x.

The adjacent side is \(2\sqrt6\)

The hypotenuse is  5

 

So the opposite side is  \(\sqrt{(5^2-2\sqrt6)^2}=\sqrt{(25-24)}=1\)

 

\(cos(x)=\frac{2\sqrt6}{5}\\ sin(x)=\frac{1}{5}\\ tan(x)=\frac{sinx}{cosx}=\frac{1}{5}\div \frac{2\sqrt6}{5}=\frac{1}{2\sqrt6}\)

 

\(sin(2x) =2sinxcosx =2*\frac{1}{5}*\frac{2\sqrt6}{5}=\frac{4\sqrt6}{25}\\~\\ cos(2x)=cos^2x-sin^2x=\frac{24}{25}-\frac{1}{25}=\frac{23}{25}\\~\\ tan(2x)\\ =\frac{2tanx}{1-tan^2x}\\ =\frac{2}{2\sqrt6}\div (1-\frac{1}{24)}\\ =\frac{1}{\sqrt6}\div \frac{23}{24}\\ =\frac{24}{23\sqrt6}\\ =\frac{24\sqrt6}{23*6}\\ =\frac{4\sqrt6}{23}\\ \)

Melody  Mar 20, 2017
 #2
avatar+19655 
+3

identities in Quadrant I

\(\begin{array}{|rcll|} \hline \sin(x) &=& \sqrt{1-\cos^2(x)} \quad & | \quad \cos(x) = \frac{2}{5} \sqrt{6} \\ &=& \sqrt{1-\left(\frac{2}{5} \sqrt{6}\right)^2} \\ &=& \sqrt{1- \frac{4}{25} \cdot 6 } \\ &=& \sqrt{1- \frac{24}{25} } \\ &=& \sqrt{\frac{25-24}{25} } \\ &=& \sqrt{\frac{1}{25} } \\ \sin(x) &=& \frac{1}{5} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \sin(2x) &=& 2\cdot \sin(x)\cdot \cos(x) \\ &=& 2\cdot \frac{1}{5}\cdot \frac{2}{5} \sqrt{6} \\ &=& \frac{4}{25}\cdot \sqrt{6} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \cos(2x) &=& 1-2\cdot \sin^2(x) \\ &=& 1-2\cdot \left( \frac{1}{5} \right)^2 \\ &=& 1- \frac{2}{25} \\ &=& \frac{25-2}{25} \\ &=& \frac{23}{25} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \tan(2x) &=& \frac{\sin(2x)}{\cos(2x)} \\ &=& \frac{\frac{4}{25}\cdot \sqrt{6}} {\frac{23}{25}} \\ &=& \frac{4}{23}\cdot \sqrt{6}\\ \hline \end{array} \)

 

laugh

heureka  Mar 20, 2017

16 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.