+0  
 
0
662
5
avatar+1278 

In the figure below, AB = AC = 50, AD = 52, and bc = 28. Determine cd.

AWESOMEEE  May 6, 2015

Best Answer 

 #3
avatar+1068 
+21

In the figure below, AB = AC = 50, AD = 52, and  BC = 28. Determine CD.

                                                                                                                                                                              "h" is the height of the triangle  ABC.                                                                                                                                                                                                                                                                                                           

h2 = (AC)2 - (BC/2)2

h2 = 502 - 142

h = sqrt(502 - 142)

h = 48

 

(CD+14)2 = (AD)2 - h2

(CD+14)2 = 522 - 482

(CD+14)2 = 400

CD = sqrt(400) - 14

CD = 6

civonamzuk  May 6, 2015
Sort: 

5+0 Answers

 #1
avatar+1278 
+5

AWESOMEEE  May 6, 2015
 #2
avatar+78618 
+10

Using the Law of Cosines, let us determine  angle BAC, first

So we have

28^2 = 50^2  + 50^2 - 2(2500)cos BAC

cos-1 [ (28^2  - 5000) / (-5000)]  = BAC =  about 32.52°

And since AC = AB  then ACB = [180 - 32.52]/ 2 = about 73.74°

And ACD is supplemental to this = about 106.26°

And using the Law of Sines

sin ADC / 50  = sin 106.26 / 52   . so...using the sine inverse, we have

sin-1 (50sin106.26/ 52)  =  ADC = about 67.38°

So angle CAD = 180 - 106.26 - 67.38 = about 6.36°

 

Now...we can find CD with the Law of Sines, again

CD / sin 6.36  = 52 / sin 106.26

CD  = 52  sin 6.36 / sin 106.26 =  6 units

 

  

CPhill  May 6, 2015
 #3
avatar+1068 
+21
Best Answer

In the figure below, AB = AC = 50, AD = 52, and  BC = 28. Determine CD.

                                                                                                                                                                              "h" is the height of the triangle  ABC.                                                                                                                                                                                                                                                                                                           

h2 = (AC)2 - (BC/2)2

h2 = 502 - 142

h = sqrt(502 - 142)

h = 48

 

(CD+14)2 = (AD)2 - h2

(CD+14)2 = 522 - 482

(CD+14)2 = 400

CD = sqrt(400) - 14

CD = 6

civonamzuk  May 6, 2015
 #4
avatar+18712 
+18

In the figure below, AB = AC = 50, AD = 52, and bc = 28. Determine cd.

I. Herons Formula: Area A (ABC):

$$\small{\text{$
\begin{array}{l|l}
A=\sqrt{s\cdot (s-a)\cdot(s-b)\cdot (s-c)} & \qquad \overline{AB} = a=50, ~ \overline{AC} = b=50,~ \overline{AD} =c=28\\\\
& \qquad s = \frac{a+b+c}{2}=\frac{50+50+28}{2}=\frac{128}{2}=64 \\
A=\sqrt{s\cdot (s-50)\cdot(s-50)\cdot (s-28)} \\
A= \sqrt{64\cdot (64-50)\cdot(64-50)\cdot (64-28)} \\
A= \sqrt{64\cdot 14 \cdot 14 \cdot 36} \\
A= \sqrt{8^2\cdot 14^2 \cdot 6^2} \\
A= 8\cdot 14 \cdot 6 \\
A=672
\end{array}
$}}$$
$$$$

II: Height h of (ABC):

$$\small{\text{$
\begin{array}{rcl}
c\cdot h &=& 2\cdot A\\\\
h&=& \dfrac{2\cdot A}{c} \\\\
h&=& \dfrac{2\cdot 672}{28}\\\\
h &= &48
\end{array}
$}}$$

III. Pythagoras:

$$\small{\text{$
x = \overline{CD}
$}}\\\\
\small{\text{$
\begin{array}{rcl}
h^2 + \left( \dfrac{c}{2}+x \right) ^2 &=& 52^2 \\\\
48^2 + \left( 14 +x \right) ^2 &=& 52^2 \\\\
\left( 14 +x \right) ^2 &=& 52^2 - 48^2\\\\
\left( 14 +x \right) ^2 &=& 20^2\\\\
14 +x &=& 20\\\\
x &=& 20-14\\\\
x &=& 6
\end{array}
$}}$$

CD = 6

heureka  May 6, 2015
 #5
avatar+1278 
+5

points

this is for points

AWESOMEEE  May 6, 2015

17 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details