In the figure below, AB = AC = 50, AD = 52, and bc = 28. Determine cd.
In the figure below, AB = AC = 50, AD = 52, and BC = 28. Determine CD.
"h" is the height of the triangle ABC.
h2 = (AC)2 - (BC/2)2
h2 = 502 - 142
h = sqrt(502 - 142)
h = 48
(CD+14)2 = (AD)2 - h2
(CD+14)2 = 522 - 482
(CD+14)2 = 400
CD = sqrt(400) - 14
CD = 6
Using the Law of Cosines, let us determine angle BAC, first
So we have
28^2 = 50^2 + 50^2 - 2(2500)cos BAC
cos-1 [ (28^2 - 5000) / (-5000)] = BAC = about 32.52°
And since AC = AB then ACB = [180 - 32.52]/ 2 = about 73.74°
And ACD is supplemental to this = about 106.26°
And using the Law of Sines
sin ADC / 50 = sin 106.26 / 52 . so...using the sine inverse, we have
sin-1 (50sin106.26/ 52) = ADC = about 67.38°
So angle CAD = 180 - 106.26 - 67.38 = about 6.36°
Now...we can find CD with the Law of Sines, again
CD / sin 6.36 = 52 / sin 106.26
CD = 52 sin 6.36 / sin 106.26 = 6 units
In the figure below, AB = AC = 50, AD = 52, and BC = 28. Determine CD.
"h" is the height of the triangle ABC.
h2 = (AC)2 - (BC/2)2
h2 = 502 - 142
h = sqrt(502 - 142)
h = 48
(CD+14)2 = (AD)2 - h2
(CD+14)2 = 522 - 482
(CD+14)2 = 400
CD = sqrt(400) - 14
CD = 6
In the figure below, AB = AC = 50, AD = 52, and bc = 28. Determine cd.
I. Herons Formula: Area A (ABC):
$$\small{\text{$
\begin{array}{l|l}
A=\sqrt{s\cdot (s-a)\cdot(s-b)\cdot (s-c)} & \qquad \overline{AB} = a=50, ~ \overline{AC} = b=50,~ \overline{AD} =c=28\\\\
& \qquad s = \frac{a+b+c}{2}=\frac{50+50+28}{2}=\frac{128}{2}=64 \\
A=\sqrt{s\cdot (s-50)\cdot(s-50)\cdot (s-28)} \\
A= \sqrt{64\cdot (64-50)\cdot(64-50)\cdot (64-28)} \\
A= \sqrt{64\cdot 14 \cdot 14 \cdot 36} \\
A= \sqrt{8^2\cdot 14^2 \cdot 6^2} \\
A= 8\cdot 14 \cdot 6 \\
A=672
\end{array}
$}}$$$$$$
II: Height h of (ABC):
$$\small{\text{$
\begin{array}{rcl}
c\cdot h &=& 2\cdot A\\\\
h&=& \dfrac{2\cdot A}{c} \\\\
h&=& \dfrac{2\cdot 672}{28}\\\\
h &= &48
\end{array}
$}}$$
III. Pythagoras:
$$\small{\text{$
x = \overline{CD}
$}}\\\\
\small{\text{$
\begin{array}{rcl}
h^2 + \left( \dfrac{c}{2}+x \right) ^2 &=& 52^2 \\\\
48^2 + \left( 14 +x \right) ^2 &=& 52^2 \\\\
\left( 14 +x \right) ^2 &=& 52^2 - 48^2\\\\
\left( 14 +x \right) ^2 &=& 20^2\\\\
14 +x &=& 20\\\\
x &=& 20-14\\\\
x &=& 6
\end{array}
$}}$$
CD = 6