+0  
 
0
44
3
avatar+7 

If a,b,c are the sides of a triangle then how do I prove that \((\dfrac {ab+bc+ca}{a^2+b^2+c^2})\geq1/2\)?

Potato  Nov 23, 2018
edited by Potato  Nov 23, 2018
 #1
avatar+20578 
+8

If a,b,c are the sides of a triangle then how do I prove that

\(\large{\dfrac {ab+bc+ca}{a^2+b^2+c^2} \geq \dfrac12 }\) ?

 

\(\begin{array}{|lrcll|} \hline 1. & a & \leq & b+c \quad | \quad \cdot a \\ & a^2 & \leq & (b+c)a \\ & \mathbf{a^2} & \mathbf{ \leq } & \mathbf{ ab+ca } \qquad (1) \\\\ 2. & b & \leq & a+c \quad | \quad \cdot b \\ & b^2 & \leq & (a+c)b \\ & \mathbf{b^2} & \mathbf{ \leq } & \mathbf{ab+bc} \qquad (2) \\\\ 3. & c & \leq & a+b \quad | \quad \cdot c \\ & c^2 & \leq & (a+b)c \\ & \mathbf{c^2} & \mathbf{ \leq } & \mathbf{ca+bc} \qquad (3) \\ \\ \hline \\ (1)+(2)+(3): & a^2+b^2+c^2 & \leq & ab+ca+ab+bc+ ca+bc \\ & a^2+b^2+c^2 & \leq & 2\cdot (ab+bc+ca) \quad | \quad : (a^2+b^2+c^2) \\ & 1 & \leq & 2\cdot \dfrac{ab+bc+ca} {a^2+b^2+c^2} \quad | \quad :2 \\ & \dfrac12 & \leq & \dfrac{ab+bc+ca} {a^2+b^2+c^2} \\ &\mathbf{ \dfrac{ab+bc+ca} {a^2+b^2+c^2}} & \mathbf{ \geq } & \mathbf{ \dfrac12 } \\ \hline \end{array}\)

 

laugh

heureka  Nov 23, 2018
 #2
avatar+7 
+3

Thank you😊

Potato  Nov 23, 2018
 #3
avatar+92429 
+1

Nice, Heureka....!!!!

 

cool cool cool

CPhill  Nov 23, 2018

12 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.