+0  
 
0
100
3
avatar+7 

If a,b,c are the sides of a triangle then how do I prove that \((\dfrac {ab+bc+ca}{a^2+b^2+c^2})\geq1/2\)?

 Nov 23, 2018
edited by Potato  Nov 23, 2018
 #1
avatar+21191 
+10

If a,b,c are the sides of a triangle then how do I prove that

\(\large{\dfrac {ab+bc+ca}{a^2+b^2+c^2} \geq \dfrac12 }\) ?

 

\(\begin{array}{|lrcll|} \hline 1. & a & \leq & b+c \quad | \quad \cdot a \\ & a^2 & \leq & (b+c)a \\ & \mathbf{a^2} & \mathbf{ \leq } & \mathbf{ ab+ca } \qquad (1) \\\\ 2. & b & \leq & a+c \quad | \quad \cdot b \\ & b^2 & \leq & (a+c)b \\ & \mathbf{b^2} & \mathbf{ \leq } & \mathbf{ab+bc} \qquad (2) \\\\ 3. & c & \leq & a+b \quad | \quad \cdot c \\ & c^2 & \leq & (a+b)c \\ & \mathbf{c^2} & \mathbf{ \leq } & \mathbf{ca+bc} \qquad (3) \\ \\ \hline \\ (1)+(2)+(3): & a^2+b^2+c^2 & \leq & ab+ca+ab+bc+ ca+bc \\ & a^2+b^2+c^2 & \leq & 2\cdot (ab+bc+ca) \quad | \quad : (a^2+b^2+c^2) \\ & 1 & \leq & 2\cdot \dfrac{ab+bc+ca} {a^2+b^2+c^2} \quad | \quad :2 \\ & \dfrac12 & \leq & \dfrac{ab+bc+ca} {a^2+b^2+c^2} \\ &\mathbf{ \dfrac{ab+bc+ca} {a^2+b^2+c^2}} & \mathbf{ \geq } & \mathbf{ \dfrac12 } \\ \hline \end{array}\)

 

laugh

 Nov 23, 2018
 #2
avatar+7 
+3

Thank you😊

Potato  Nov 23, 2018
 #3
avatar+95884 
+1

Nice, Heureka....!!!!

 

cool cool cool

 Nov 23, 2018

19 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.