(log^2 6^2 - log^2 3^2)/( log^2 log 18)=
The value from :
\(\begin{array}{rcl} ^2\log{(6^2)} - ^2\log{(3^2)} &=&\\ &=& \log_2{(6^2)}-\log_2{(3^2)} \\ &=& \log_2{ ( \frac{6^2 } {3^2 } ) } \\ &=& \log_2{ ( { ( \frac63 ) }^2 ) } \\ &=& \log_2{ ( { 2 }^2 ) } \qquad = \quad ^2\log{ ( { 2 }^2 ) }\\ &=& 2 \end{array}\)
As far as I can gather ...
The value from :
\(\begin{array}{rcl} ^2\log{(6^2)} - ^2\log{(3^2)} &=&\\ &=& \log_2{(6^2)}-\log_2{(3^2)} \\ &=& \log_2{ ( \frac{6^2 } {3^2 } ) } \\ &=& \log_2{ ( { ( \frac63 ) }^2 ) } \\ &=& \log_2{ ( { 2 }^2 ) } \qquad = \quad ^2\log{ ( { 2 }^2 ) }\\ &=& 2 \end{array}\)
As far as I can gather ...