+0  
 
+5
541
2
avatar

(log^2 6^2 - log^2 3^2)/( log^2 log 18)=

 Oct 29, 2015
edited by Guest  Oct 29, 2015
edited by Guest  Oct 29, 2015

Best Answer 

 #1
avatar+26400 
+30

The value from :

 

\(\begin{array}{rcl} ^2\log{(6^2)} - ^2\log{(3^2)} &=&\\ &=& \log_2{(6^2)}-\log_2{(3^2)} \\ &=& \log_2{ ( \frac{6^2 } {3^2 } ) } \\ &=& \log_2{ ( { ( \frac63 ) }^2 ) } \\ &=& \log_2{ ( { 2 }^2 ) } \qquad = \quad ^2\log{ ( { 2 }^2 ) }\\ &=& 2 \end{array}\)

 

As far as I can gather ...

 

laugh

 Oct 29, 2015
 #1
avatar+26400 
+30
Best Answer

The value from :

 

\(\begin{array}{rcl} ^2\log{(6^2)} - ^2\log{(3^2)} &=&\\ &=& \log_2{(6^2)}-\log_2{(3^2)} \\ &=& \log_2{ ( \frac{6^2 } {3^2 } ) } \\ &=& \log_2{ ( { ( \frac63 ) }^2 ) } \\ &=& \log_2{ ( { 2 }^2 ) } \qquad = \quad ^2\log{ ( { 2 }^2 ) }\\ &=& 2 \end{array}\)

 

As far as I can gather ...

 

laugh

heureka Oct 29, 2015
 #2
avatar
0

Thank you very much!

 Oct 30, 2015

0 Online Users