This is equal to 14+(14+3)+(14+3∗2)...
Separate the 14s: 14∗102+3+3∗2+...+3∗101
Factor: 14∗102+3(1+2+...+101)
Evaluate: 1428+3(1+2...+101)
Sum of consecutive integers = n(n+1)2
Evaluate again: 1428+3(101(102)2)
1428+3∗5151
1428+15453
Final answer = 16881