This is equal to \(14+(14+3)+(14+3*2)...\)
Separate the 14s: \(14*102+3+3*2+...+3*101\)
Factor: \(14*102+3(1+2+...+101)\)
Evaluate: \(1428+3(1+2...+101)\)
Sum of consecutive integers = \({n(n+1)\over2}\)
Evaluate again: \(1428+3({101(102)\over2})\)
\(1428+3*5151\)
\(1428+15453\)
Final answer = \(16881\)