Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
898
3
avatar

What is 14+17+20+23+....+317

 Oct 19, 2017
 #1
avatar+351 
+1

This is equal to 14+(14+3)+(14+32)...

Separate the 14s: 14102+3+32+...+3101

Factor: 14102+3(1+2+...+101)

Evaluate: 1428+3(1+2...+101)

Sum of consecutive integers = n(n+1)2

Evaluate again: 1428+3(101(102)2)

1428+35151

1428+15453

Final answer = 16881 wink

 Oct 20, 2017
 #2
avatar
+1

Number of terms = [317 - 14] / 3  +  1 = 102

[F + L] / 2  x 102 =, where F=First, L=Last.

[14 + 317] / 2  x 102 =16,881

 Oct 20, 2017
 #3
avatar+130466 
+1

We have 

 

[a1 + an ] ( [ an - a1 ] / 3 + 1 ) / 2

 

Where a1 and an are the first and last terms to be summed  and 

( [ an - a1 ] / 3 + 1 ) / 2     are the number of pairs of equal sums to be added together

 

So we have 

 

[ 14 + 317 ] ( [317 - 14 ] / 3  + 1 )  / 2  =  16881

 

 

cool cool cool

 Oct 20, 2017

1 Online Users