+0

# math, help!

+1
504
3

On a particular day in Salt Lake, UT, the temperature was given by \(-t^2 +12t+50\) where \(t\)  is the time in hours past noon. What is the largest \(t\) value at which the temperature was exactly 77 degrees?

Dec 30, 2017

#1
+1

temperature  =  -t2 + 12t + 50

And we want to know what  t  is when the temperature is  77  .

77   =   -t2 + 12t + 50        Now we want to solve this equation for  t .

Get one side of the equation equal to zero.

t2 - 12t + 27   =   0

Now we can factor the left side like this..

(t - 9)(t - 3)   =   0

Set each factor equal to zero.

t - 9  =  0          or          t - 3  =  0

t  =  9               or          t  =  3

The largest value of  t  that causes the expression    -t2 + 12t + 50   to be  77  is   9   .

Dec 30, 2017

#1
+1

temperature  =  -t2 + 12t + 50

And we want to know what  t  is when the temperature is  77  .

77   =   -t2 + 12t + 50        Now we want to solve this equation for  t .

Get one side of the equation equal to zero.

t2 - 12t + 27   =   0

Now we can factor the left side like this..

(t - 9)(t - 3)   =   0

Set each factor equal to zero.

t - 9  =  0          or          t - 3  =  0

t  =  9               or          t  =  3

The largest value of  t  that causes the expression    -t2 + 12t + 50   to be  77  is   9   .

hectictar Dec 30, 2017
#2
+3

Boom! You rock, hectictar! It's correct! I understand it better now...

Dec 30, 2017
#3
+1

Thanks!! Glad to be of some help!! hectictar  Dec 30, 2017