+0  
 
0
569
1
avatar

Compute \(\frac{2}{3} \cdot 3 \frac{1}{3} + \frac{1}{3}\left(3+\frac{1}{3}\right)\)

and express your answer as a mixed number.

 

 

I thought it was 1 7/9 but apparently not.

 Jun 15, 2016
 #1
avatar+1904 
+4

I can see where you got your answer of \(1\frac{7}{9}\).  \(3\frac{1}{3}\) is not \(3\times\frac{1}{3}\)\(3\frac{1}{3}\) is \(3+\frac{1}{3}\)

 

\(\frac{2}{3}\times3\frac{1}{3}+\frac{1}{3}(3+\frac{1}{3})\)

 

\(\frac{2}{3}\times(3+\frac{1}{3})+\frac{1}{3}(3+\frac{1}{3})\)

 

\(\frac{2}{3}(3+\frac{1}{3})+\frac{1}{3}(3+\frac{1}{3})\)

 

\((\frac{6}{3}+\frac{2}{9})+\frac{1}{3}(3+\frac{1}{3})\)

 

\((\frac{18}{9}+\frac{2}{9})+\frac{1}{3}(3+\frac{1}{3})\)

 

\(\frac{20}{9}+\frac{1}{3}(3+\frac{1}{3})\)

 

\(\frac{20}{9}+\frac{3}{3}+\frac{1}{9}\)

 

\(\frac{20}{9}+\frac{9}{9}+\frac{1}{9}\)

 

\(\frac{29}{9}+\frac{1}{9}\)

 

\(\frac{30}{9}\)

 

\(3\frac{3}{9}\)

 

\(3\frac{1}{3}\)

.
 Jun 15, 2016
edited by gibsonj338  Jun 15, 2016

3 Online Users

avatar
avatar