Compute \(\frac{2}{3} \cdot 3 \frac{1}{3} + \frac{1}{3}\left(3+\frac{1}{3}\right)\)
and express your answer as a mixed number.
I thought it was 1 7/9 but apparently not.
I can see where you got your answer of \(1\frac{7}{9}\). \(3\frac{1}{3}\) is not \(3\times\frac{1}{3}\), \(3\frac{1}{3}\) is \(3+\frac{1}{3}\).
\(\frac{2}{3}\times3\frac{1}{3}+\frac{1}{3}(3+\frac{1}{3})\)
\(\frac{2}{3}\times(3+\frac{1}{3})+\frac{1}{3}(3+\frac{1}{3})\)
\(\frac{2}{3}(3+\frac{1}{3})+\frac{1}{3}(3+\frac{1}{3})\)
\((\frac{6}{3}+\frac{2}{9})+\frac{1}{3}(3+\frac{1}{3})\)
\((\frac{18}{9}+\frac{2}{9})+\frac{1}{3}(3+\frac{1}{3})\)
\(\frac{20}{9}+\frac{1}{3}(3+\frac{1}{3})\)
\(\frac{20}{9}+\frac{3}{3}+\frac{1}{9}\)
\(\frac{20}{9}+\frac{9}{9}+\frac{1}{9}\)
\(\frac{29}{9}+\frac{1}{9}\)
\(\frac{30}{9}\)
\(3\frac{3}{9}\)
\(3\frac{1}{3}\)
.