+0  
 
0
658
1
avatar

(y^2-X)^2 when y= 1 and x=2

 Apr 15, 2016
 #1
avatar+1904 
0

\({({y}^{2}-x)}^{2}\)  \(y=1\) and \(x=2\)

 

Two ways to solve this

 

The short way

 

Subsitute \(1\) for \(y\) and \(2\) for \(x\) and solve

 

\({({1}^{2}-2)}^{2}\)

 

\({(1-2)}^{2}\)

 

\({(-1)}^{2}\)

 

\(1\)

 

The long way

 

Subsitute \(1\) for \(y\) and \(2\) for \(x\), expand the expression and solve

 

\({({1}^{2}-2)}^{2}\)

 

\(({1}^{2}-2)({1}^{2}-2)\)

 

\((1-2)({1}^{2}-2)\)

 

\((1-2)(1-2)\) 

 

\(1-2-2+4\)

 

\(-1-2+4\)

 

\(-3+4\)

 

\(1\)

 

OR

 

\({({1}^{2}-2)}^{2}\)

 

\(({1}^{2}-2)({1}^{2}-2)\)

 

\({1}^{4}+{1}^{2}(-2)+(-2)({1}^{2})+4\)

 

 

 

 

\(1+{1}^{2}(-2)+(-2)({1}^{2})+4\)

 

\(1+1(-2)+(-2)({1}^{2})+4\)

 

\(1+(-2)+(-2)({1}^{2})+4\)

 

\(1+(-2)+(-2)(1)+4\)

 

\(1+(-2)+(-2)+4\)

 

\(-1+(-2)+4\)

 

\(-3+4\)

 

\(1\)

 Apr 15, 2016
edited by gibsonj338  Apr 15, 2016

0 Online Users