\({({y}^{2}-x)}^{2}\) \(y=1\) and \(x=2\)
Two ways to solve this
The short way
Subsitute \(1\) for \(y\) and \(2\) for \(x\) and solve
\({({1}^{2}-2)}^{2}\)
\({(1-2)}^{2}\)
\({(-1)}^{2}\)
\(1\)
The long way
Subsitute \(1\) for \(y\) and \(2\) for \(x\), expand the expression and solve
\({({1}^{2}-2)}^{2}\)
\(({1}^{2}-2)({1}^{2}-2)\)
\((1-2)({1}^{2}-2)\)
\((1-2)(1-2)\)
\(1-2-2+4\)
\(-1-2+4\)
\(-3+4\)
\(1\)
OR
\({({1}^{2}-2)}^{2}\)
\(({1}^{2}-2)({1}^{2}-2)\)
\({1}^{4}+{1}^{2}(-2)+(-2)({1}^{2})+4\)
\(1+{1}^{2}(-2)+(-2)({1}^{2})+4\)
\(1+1(-2)+(-2)({1}^{2})+4\)
\(1+(-2)+(-2)({1}^{2})+4\)
\(1+(-2)+(-2)(1)+4\)
\(1+(-2)+(-2)+4\)
\(-1+(-2)+4\)
\(-3+4\)
\(1\)