We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+2
59
3
avatar+893 

Answer: 4

 Jul 24, 2019
 #1
avatar+5654 
+4

\(\text{Well conceptually it's simple enough}\\ n + d + q = 30\\ 5n+10d+25q=500 \\ n+2d+5q=100\)

 

\(\text{we can take the difference of these two equations to obtain}\\ d + 4q=70\\ q = \dfrac{70-d}{4},~q \in \mathbb{Z^+}+\{0\}\\ \text{and we can now read off the possible $q$'s}\\ (d,q)=(2,17), (6,16),(10,15),(14,14),(18,13),(22,12), (26,11),(30,10)\\ \text{and of these we select those who's sum is 30 or less}\\ (d,q)=(2,17), (6,16),(10,15),(14,14)\\ \text{and we can then fill in $n$}\\ (n,d,q) = (11,2,17), (8,6,16), (5,10,15), (2,14,14) \)

.
 Jul 24, 2019
 #2
avatar+22896 
+4

 OSL4#13

 

\(\text{Let the number of nickels $=n$, $1$ nickel $= 5 $ cent } \\ \text{Let the number of dimes $=d$, $1$ dime $= 10 $ cent } \\ \text{Let the number of quaters $=q$, $1$ quater $= 25$ cent }\)

 

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{ n+d+q } &=& \mathbf{30} \\\\ & 5n+10d+25q &=& 500 \qquad \text{in cents}\quad &| \quad : 5 \\ (2) & \mathbf{ n+2d+ 5q } &=& \mathbf{100} \\ \hline (2)-(1): & n+2d+ 5q -(n+d+q) &=& 100-30 \\ & n+2d+ 5q -n-d-q &=& 70 \\ & d+ 4q &=& 70 \quad &| \quad -4q \\ (3)& \mathbf{ d } &=& \mathbf{70- 4q} \\ \hline & n+d+q &=& 30 \\ &n&=& 30-d-q \quad &| \quad d =70- 4q \\ &n&=& 30-(70- 4q)-q \\ &n&=& 30-70+ 4q-q \\ (4)& \mathbf{ n } &=& \mathbf{-40+ 3q} \\ \hline \end{array} \)

 

\(\mathbf{d \geq 0}\)

\(\begin{array}{|rcll|} \hline 70- 4q &\geq& 0\quad &| \quad + 4q \\ 70 &\geq& 4q \quad &| \quad : 4 \\ \dfrac{70}{4} &\geq& q \\ q &\leq& \dfrac{70}{4} \\ q &\leq& 17.50 \\ \mathbf{q} &\leq& \mathbf{17} \\ \hline \end{array}\)

 

\(\mathbf{n \geq 0}\)

\(\begin{array}{|rcll|} \hline -40+ 3q &\geq& 0 \quad &| \quad +40 \\ 3q &\geq& 40 \quad &| \quad : 3 \\ q &\geq& \dfrac{40}{3} \\ q &\geq& 13.3333333333 \\ \mathbf{q} &\geq& \mathbf{14} \\ \hline \end{array} \)

 

\(\mathbf{14\leq q \leq 17 } \qquad q=\{14,\ 15,\ 16,\ 17 \} \)

There are 4 different combinations.

 

The combinations:

\(\begin{array}{|c|c|c|} \hline \text{q (Quaters)} & d=70- 4q \text{ (dimes)} & n=3q-40 \text{ (nickels)} \\ \hline 14 & 14 & 2 \\ 15 & 10 & 5 \\ 16 & 6 & 8 \\ 17 & 2 &11 \\ \hline \end{array}\)

 

laugh

 Jul 24, 2019
edited by heureka  Jul 24, 2019
 #3
avatar+893 
+3

Thanks for all your help!!!

dgfgrafgdfge111  Jul 24, 2019

20 Online Users

avatar
avatar