+0  
 
+1
44
3
avatar+599 

1. If the parabola \(y_1 = x^2 + 2x + 7\) and the line \(y_2 = 6x + b\) intersect at only one point, what is the value of \(b\)?

 

2. The quadratic \(x^2+(2.6)x+3.6\) can be written in the form \((x+b)^2+c\), where \(b\) and \(c\) are constants. What is  \(b+c\) (as a decimal)?

mathtoo  Aug 11, 2018
 #1
avatar+88775 
+2

1.  Set the equations equal

 

x^2 + 2x + 7  = 6x + b      simplify

x^2 - 4x + (7 - b)   = 0

 

If there is  a single solution to this, the discriminant must  = 0

Therefore

 

(-4)^2  - 4 (1) ( 7 - b)   = 0  simplify

16 - 4(7 - b)   = 0

16 - 28 + 4b  = 0

-12 + 4b  = 0

-12  = -4b    divide  both sides  by -4

3  = b

 

Here's a graph : https://www.desmos.com/calculator/fykdlia1ej....the intersection point is  (2, 15)

 

 

cool cool cool

CPhill  Aug 11, 2018
 #2
avatar+88775 
+2

2.  x^2 + (2.6)x + 3.6    .....complete the square  on  x

 

Take (1/2) of 2.6  = 1.3....square it  = 1.69 ....add it and subtract it.......

 

x^2 + (2.6)x  + 1.69 + 3.6 - 1.69        facto the  first three terms....simplify the rest

 

(x + 1.3)^2  + 1.91

 

b = 1.3   c  = 1.91

 

So

 

b + c  =  1.3  + 1.91   =  3.21

 

 

 

cool cool cool

CPhill  Aug 11, 2018
 #3
avatar+599 
+1

Great solutions, CPhill! Thank you!

mathtoo  Aug 12, 2018

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.