+0  
 
+1
327
1
avatar+603 

Points $A$ and $B$ have the same $y$-coordinate of 13, but different $x$-coordinates. What is the sum of the slope and the $y$-intercept of the line containing both points?

 Apr 16, 2018

Best Answer 

 #1
avatar+8962 
+2

Let point A be   (a, 13)

Let point B be   (b, 13)

 

slope between point A and point B   \(=\,\frac{\text{difference in y-coordinates}}{\text{difference in x-coordinates}}\\~\\ =\,\frac{13-13}{a-b}\\~\\ =\,\frac{0}{a-b}\\~\\ =\,0\)

 

Line AB is a horizontal line where the y-coordinate of all its points is 13 .

So the y-coordinate when  x = 0  is also  13 .

 

y-intercept   =   13

 

sum of slope and y-intercept   =   0 + 13   =   13

 Apr 16, 2018
 #1
avatar+8962 
+2
Best Answer

Let point A be   (a, 13)

Let point B be   (b, 13)

 

slope between point A and point B   \(=\,\frac{\text{difference in y-coordinates}}{\text{difference in x-coordinates}}\\~\\ =\,\frac{13-13}{a-b}\\~\\ =\,\frac{0}{a-b}\\~\\ =\,0\)

 

Line AB is a horizontal line where the y-coordinate of all its points is 13 .

So the y-coordinate when  x = 0  is also  13 .

 

y-intercept   =   13

 

sum of slope and y-intercept   =   0 + 13   =   13

hectictar Apr 16, 2018

44 Online Users

avatar
avatar
avatar
avatar
avatar