Okay, let's start by multiplying the right hand side by $$\frac{1+cos(\theta)}{1+cos(\theta)}$$
We now have
$$\frac{sin(\theta)+tan(\theta)}{1+cos(\theta)} = \frac{tan(\theta) (1+cos(\theta))}{1+cos(\theta)}$$
Work out the numerator on the right hand side
$$\frac{sin(\theta)+tan(\theta)}{1+cos(\theta)} = \frac{tan(\theta) cos(\theta)+tan(\theta)}{1+cos(\theta)}$$
Use $$tan(\theta) = \frac{sin(\theta)}{cos(\theta)}$$
$$\frac{sin(\theta)+tan(\theta)}{1+cos(\theta)} = \frac{\frac{sin(\theta)}{cos(\theta)} cos(\theta)+tan(\theta)}{1+cos(\theta)}$$
and now we have
$$\frac{sin(\theta)+tan(\theta)}{1+cos(\theta)} = \frac{sin(\theta)+tan(\theta)}{1+cos(\theta)}$$
Reinout
Okay, let's start by multiplying the right hand side by $$\frac{1+cos(\theta)}{1+cos(\theta)}$$
We now have
$$\frac{sin(\theta)+tan(\theta)}{1+cos(\theta)} = \frac{tan(\theta) (1+cos(\theta))}{1+cos(\theta)}$$
Work out the numerator on the right hand side
$$\frac{sin(\theta)+tan(\theta)}{1+cos(\theta)} = \frac{tan(\theta) cos(\theta)+tan(\theta)}{1+cos(\theta)}$$
Use $$tan(\theta) = \frac{sin(\theta)}{cos(\theta)}$$
$$\frac{sin(\theta)+tan(\theta)}{1+cos(\theta)} = \frac{\frac{sin(\theta)}{cos(\theta)} cos(\theta)+tan(\theta)}{1+cos(\theta)}$$
and now we have
$$\frac{sin(\theta)+tan(\theta)}{1+cos(\theta)} = \frac{sin(\theta)+tan(\theta)}{1+cos(\theta)}$$
Reinout