We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
206
2
avatar

The lengths of the perpendiculars drawn to the sides of a regular hexagon from an interior point are 4, 5, 6, 8, 9, and 10 centimeters. What is the number of centimeters in the length of a side of this hexagon? Express your answer as a common fraction in simplest radical form.

 Dec 5, 2018
 #1
avatar+22010 
+11

The lengths of the perpendiculars drawn to the sides of a regular hexagon from an interior point are 4, 5, 6, 8, 9, and 10 centimeters.

What is the number of centimeters in the length of a side of this hexagon?

Express your answer as a common fraction in simplest radical form.

 

 

\(\begin{array}{|rcll|} \hline 7 = \dfrac{4+10}{2} = \dfrac{5+9}{2}= \dfrac{6+8}{2} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline {\color{red} s}^2 &=& \left({\color{red}\dfrac{s}{2}}\right)^2 +7^2 \\\\ s^2 &=&\dfrac{s^2}{4} + 7^2 \\\\ s^2-\dfrac{s^2}{4} &=& 7^2 \\\\ \dfrac{3}{4} s^2 &=& 7^2 \\\\ s^2 &=& \dfrac{4}{3} \cdot 7^2 \quad & | \quad \text{sqrt both sides}\\\\ s &=& \dfrac{2}{\sqrt{3}} \cdot 7 \\\\ s &=& \dfrac{14}{\sqrt{3}} \\\\ s &=& \dfrac{14}{\sqrt{3}}\cdot \dfrac{\sqrt{3}}{\sqrt{3}} \\\\ \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{14}{3}\cdot \sqrt{3} } \\ \hline \end{array}\)

 

The number of centimeters in the length of a side of this hexagon is \( \mathbf{\dfrac{14}{3}\cdot \sqrt{3} } \ \text{cm}\)

 

laugh

 Dec 6, 2018
 #2
avatar+22010 
+11

The lengths of the perpendiculars drawn to the sides of a regular hexagon from an interior point are 4, 5, 6, 8, 9, and 10 centimeters.
What is the number of centimeters in the length of a side of this hexagon?
Express your answer as a common fraction in simplest radical form.

 

With Aera A:

 

\(\begin{array}{|rcll|} \hline A &=& \dfrac{s^2\cdot \sin(60^{\circ})}{2} \cdot 6 \quad & | \quad \sin(60^{\circ}) = \dfrac{\sqrt{3}}{2} \\\\ &=& \dfrac{s^2\cdot \dfrac{\sqrt{3}}{2}}{2} \cdot 6 \\\\ \mathbf{A} & \mathbf{=} & \mathbf{\dfrac{3}{2} \sqrt{3}s^2 } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline A &=& \dfrac{s\cdot 4}{2}+ \dfrac{s\cdot 5}{2}+ \dfrac{s\cdot 6}{2}+ \dfrac{s\cdot 8}{2}+ \dfrac{s\cdot 9}{2}+ \dfrac{s\cdot 10}{2} \\\\ &=& \dfrac{1}{2}(4+5+6+8+9+10)s \\\\ &=& \dfrac{1}{2}\cdot 42s \\\\ \mathbf{A} & \mathbf{=} & \mathbf{21s} \\ \hline \end{array}\)

 

\(\mathbf{s =\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{3}{2} \sqrt{3}s^2 } &=& \mathbf{21s} \\\\ \dfrac{3}{2} \sqrt{3}s &=& 21 \\\\ s &=& 21 \dfrac{2}{3\sqrt{3}} \\\\ s &=& \dfrac{14}{\sqrt{3}} \\\\ s &=& \dfrac{14}{\sqrt{3}}\cdot \dfrac{\sqrt{3}}{\sqrt{3}} \\\\ \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{14}{3}\cdot \sqrt{3} } \\ \hline \end{array} \)

 

The number of centimeters in the length of a side of this hexagon is \(\mathbf{\dfrac{14}{3}\cdot \sqrt{3} } \ \text{cm}\)

 

laugh

 Dec 6, 2018

10 Online Users

avatar