+0  
 
0
40
2
avatar

The lengths of the perpendiculars drawn to the sides of a regular hexagon from an interior point are 4, 5, 6, 8, 9, and 10 centimeters. What is the number of centimeters in the length of a side of this hexagon? Express your answer as a common fraction in simplest radical form.

Guest Dec 5, 2018
 #1
avatar+20683 
+4

The lengths of the perpendiculars drawn to the sides of a regular hexagon from an interior point are 4, 5, 6, 8, 9, and 10 centimeters.

What is the number of centimeters in the length of a side of this hexagon?

Express your answer as a common fraction in simplest radical form.

 

 

\(\begin{array}{|rcll|} \hline 7 = \dfrac{4+10}{2} = \dfrac{5+9}{2}= \dfrac{6+8}{2} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline {\color{red} s}^2 &=& \left({\color{red}\dfrac{s}{2}}\right)^2 +7^2 \\\\ s^2 &=&\dfrac{s^2}{4} + 7^2 \\\\ s^2-\dfrac{s^2}{4} &=& 7^2 \\\\ \dfrac{3}{4} s^2 &=& 7^2 \\\\ s^2 &=& \dfrac{4}{3} \cdot 7^2 \quad & | \quad \text{sqrt both sides}\\\\ s &=& \dfrac{2}{\sqrt{3}} \cdot 7 \\\\ s &=& \dfrac{14}{\sqrt{3}} \\\\ s &=& \dfrac{14}{\sqrt{3}}\cdot \dfrac{\sqrt{3}}{\sqrt{3}} \\\\ \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{14}{3}\cdot \sqrt{3} } \\ \hline \end{array}\)

 

The number of centimeters in the length of a side of this hexagon is \( \mathbf{\dfrac{14}{3}\cdot \sqrt{3} } \ \text{cm}\)

 

laugh

heureka  Dec 6, 2018
 #2
avatar+20683 
+4

The lengths of the perpendiculars drawn to the sides of a regular hexagon from an interior point are 4, 5, 6, 8, 9, and 10 centimeters.
What is the number of centimeters in the length of a side of this hexagon?
Express your answer as a common fraction in simplest radical form.

 

With Aera A:

 

\(\begin{array}{|rcll|} \hline A &=& \dfrac{s^2\cdot \sin(60^{\circ})}{2} \cdot 6 \quad & | \quad \sin(60^{\circ}) = \dfrac{\sqrt{3}}{2} \\\\ &=& \dfrac{s^2\cdot \dfrac{\sqrt{3}}{2}}{2} \cdot 6 \\\\ \mathbf{A} & \mathbf{=} & \mathbf{\dfrac{3}{2} \sqrt{3}s^2 } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline A &=& \dfrac{s\cdot 4}{2}+ \dfrac{s\cdot 5}{2}+ \dfrac{s\cdot 6}{2}+ \dfrac{s\cdot 8}{2}+ \dfrac{s\cdot 9}{2}+ \dfrac{s\cdot 10}{2} \\\\ &=& \dfrac{1}{2}(4+5+6+8+9+10)s \\\\ &=& \dfrac{1}{2}\cdot 42s \\\\ \mathbf{A} & \mathbf{=} & \mathbf{21s} \\ \hline \end{array}\)

 

\(\mathbf{s =\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{3}{2} \sqrt{3}s^2 } &=& \mathbf{21s} \\\\ \dfrac{3}{2} \sqrt{3}s &=& 21 \\\\ s &=& 21 \dfrac{2}{3\sqrt{3}} \\\\ s &=& \dfrac{14}{\sqrt{3}} \\\\ s &=& \dfrac{14}{\sqrt{3}}\cdot \dfrac{\sqrt{3}}{\sqrt{3}} \\\\ \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{14}{3}\cdot \sqrt{3} } \\ \hline \end{array} \)

 

The number of centimeters in the length of a side of this hexagon is \(\mathbf{\dfrac{14}{3}\cdot \sqrt{3} } \ \text{cm}\)

 

laugh

heureka  Dec 6, 2018

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.