+0  
 
0
622
4
avatar+10 

Express

\( P(z)=z^4-z^3+z^2+2a\)

as a product of two real quadratic factors given that 1+i is a root of P(z) and a is a real number.

 

I managed to find one quadratic factor by using the complex root and its conjugate:

\(z^2-2z+2\)

 

I then solved for a using P(1+i)=0 because 1+i is a root.

\(a = 2-\sqrt2\)

 

But then after multiplying the quadratic factors and putting them equal to P(z):

\((z^2-2z+2)(dz^2+ez+f)=z^4-z^3+z^2+2(2-\sqrt2)\)

I can't find a value for d, e, and f which they all agree on.

 

I might have gone wrong at any point during my working, so don't assume what I've written is right. Any help figuring out what went wrong would be appreciated.

 Nov 1, 2016

Best Answer 

 #2
avatar+26388 
+10

Express

\(P(z)=z^4-z^3+z^2+2a\)

as a product of two real quadratic factors given that 1+i is a root of P(z) and a is a real number.

 

\(\begin{array}{|lcll|} \hline \text{Let } z_1 = 1+i\\\\ \text{If } z_1 \text{ is a root of } P(z) \text{ then } (z-z_1)=(z-(1+i)) \text{ divides } P(z) \\ \text{If } (1+i) \text{ is a root of } P(z) \text{ then the complex conjugate } (1-i)=z_2 \text{ is a root of } P(z) \\ \text{If } z_2 \text{ is a root of } P(z) \text{ then } (z-z_2)=(z-(1-i)) \text{ divides } P(z) \\ \text{The first real quadratic factor is }\\ (z-(1+i))\cdot (z-(1-i)) \\ = [(z-1)-i]\cdot [(z-1)+i]\\ = (z-1)^2 -i^2 \\ = (z-1)^2 +1 \\ = z^2-2z+1+1 \\ = z^2-2z+2 \\\\ P(1+i)=0\\ (1+i)^4-(1+i)^3+(1+i)^2+2a = 0 \\ (1+i)^2[ (1+i)^2-(1+i)+1]+2a = 0 \\ (1+i)^2[ (1+i)^2-i]+2a = 0 \\ (1+2i+i^2)( 1+2i+i^2 -i)+2a = 0 \\ (1+2i-1)( 1+2i-1-i )+2a = 0 \\ ( 2i )( i )+2a = 0 \\ 2i^2 +2a = 0 \\ -2 +2a = 0 \\ 2a = 2 \\ a = 1 \\\\ \text{also } P(1-i)=0 \Rightarrow a = 1 \\\\ \text{The second real quadratic factor is } z^4-z^3+z^2+2 : (z^2-2z+2) = z^2+z+1 \\ \text{so } z^4-z^3+z^2+2 = (z^2-2z+2)\cdot ( z^2+z+1 ) \\ \hline \end{array}\)

 Nov 2, 2016
 #1
avatar+118658 
+10

Hi Dubulyue.

 

This was a long one! angry      There may be a better way of doing it though.    frown

 

Express

\(P(z)=z^4-z^3+z^2+2a\)

as a product of two real quadratic factors given that 1+i is a root of P(z) and a is a real number.

P(1+i)=0

 

\((1+i)^4-(1+i)^3+(1+i)^2+2a=0\\ (-4)-(2i-2)+(2i)+2a=0\\ (-4)-(2i-2)+(2i)+2a=0\\ -4+2+2a-2i+2i=0\\ -2+2a=0\\ a=1\)

 

\(P(z)=z^4-z^3+z^2+2\\ \)

I'm going to let (hope) the factors are

\((z^2+bz+c)(z^2+dz+e)\\ \begin{array}\\ &z^4\quad +&d&z^3\quad+&e&z^2\\ &&b&z^3\quad+&bd&z^2\quad+&be&z\\ &&&&c&z^2\quad+&cd&z\quad+&ce\\ &z^4&(d+b)&z^3\quad+&(e+c+bd)&z^2\quad+&(be+cd)&z\quad+&ce\\ =&z^4&(-1)&z^3\quad+&(1)&z^2\quad+&(0)&z\quad+&2 \end{array}\)

 

\(b+d=-1\\ \boxed{d=-1-b}\\~\\ \boxed{ce=2\quad \text{so they are either (1 and 2) or ( -1 and -2)}}\\\)

 

\(e+c+bd=1\\~\\ \text{If (c and e) are (2 and 1) then}\\ \qquad 3+bd=1\\ \qquad bd=-2\quad \\\ \qquad \text{so b and d must be (-1 and 2) or (1 and -2) any order}\\ or\\ \text{If (c and e) are (-2 and -1) then}\\\\ \qquad -3+bd=1\\ \qquad bd=4\quad \\\ \qquad \text{so (b and d) must be (-1 and -4) or (1 and 4) or (2,2) or (-2,-2) any order}\\\)

 

Now I will use the fact that      d = -1 - b      to check which of these could be correct.

b= -1      d=-1--1 = 0    not a pair

b=2        d=-1-2=-3      No

b= 1       d=-1 -1 = -2         so  b=1 and d=-2   works  

b=-2       d=-1--2 =1           so  b=-2 and d=1   works

 

so far: 

           c and e are    2 and 1   

and     b and d are    -2 and 1 

 

 

\(\text{But from equating co-efficients of z}\\~\\ be+cd=0\\~\\ -2*1+2*1=0 \qquad   or \qquad    1*2+ 1*-2=0\\ so\; either\\ b=1,  e=2,  c=1, \;\;  and\;\;  d=-2     \qquad        (z^2+z +1)(z^2-2z +2)\\ OR    \\ b=-2, e=1,  c=2,\;\;  and \;\; d=1     \qquad         (z^2-2z +2)(z^2+z +1)\\~\\ \text{These two answers are identical}\)

 

 

 

\(P(z)=z^4-z^3+z^2+2=(z^2-2z +2)(z^2+z +1)\\ \)

 

FINITO     cool

 Nov 2, 2016
 #2
avatar+26388 
+10
Best Answer

Express

\(P(z)=z^4-z^3+z^2+2a\)

as a product of two real quadratic factors given that 1+i is a root of P(z) and a is a real number.

 

\(\begin{array}{|lcll|} \hline \text{Let } z_1 = 1+i\\\\ \text{If } z_1 \text{ is a root of } P(z) \text{ then } (z-z_1)=(z-(1+i)) \text{ divides } P(z) \\ \text{If } (1+i) \text{ is a root of } P(z) \text{ then the complex conjugate } (1-i)=z_2 \text{ is a root of } P(z) \\ \text{If } z_2 \text{ is a root of } P(z) \text{ then } (z-z_2)=(z-(1-i)) \text{ divides } P(z) \\ \text{The first real quadratic factor is }\\ (z-(1+i))\cdot (z-(1-i)) \\ = [(z-1)-i]\cdot [(z-1)+i]\\ = (z-1)^2 -i^2 \\ = (z-1)^2 +1 \\ = z^2-2z+1+1 \\ = z^2-2z+2 \\\\ P(1+i)=0\\ (1+i)^4-(1+i)^3+(1+i)^2+2a = 0 \\ (1+i)^2[ (1+i)^2-(1+i)+1]+2a = 0 \\ (1+i)^2[ (1+i)^2-i]+2a = 0 \\ (1+2i+i^2)( 1+2i+i^2 -i)+2a = 0 \\ (1+2i-1)( 1+2i-1-i )+2a = 0 \\ ( 2i )( i )+2a = 0 \\ 2i^2 +2a = 0 \\ -2 +2a = 0 \\ 2a = 2 \\ a = 1 \\\\ \text{also } P(1-i)=0 \Rightarrow a = 1 \\\\ \text{The second real quadratic factor is } z^4-z^3+z^2+2 : (z^2-2z+2) = z^2+z+1 \\ \text{so } z^4-z^3+z^2+2 = (z^2-2z+2)\cdot ( z^2+z+1 ) \\ \hline \end{array}\)

heureka Nov 2, 2016
 #3
avatar+129839 
+5

Going from this point in Melody's answer....

 

P(z)  = z^4 - z^3 + z^2+ 2

 

We know that 1 + i  is a root....therefore (1 - i)  must also be a root.....thus, the resulting polynomial is

 

[z -  ( 1 + i ) ]  [ z - (1 - i ) ]  =

 

 z^2    -z(1 + i) -z(1-i)  + 2  =

 

z^2  - 2z + 2

 

Now.....using some polynomial long division, we can determine the other factor

 

                         z^2  + z  + 1

 

z^2 - 2z + 2  [   z^4     - z^3  + z^2            + 2   ]

                        z^4     - 2z^3 + 2z^2

                       ________________________

                                    z^3  - z^2            +    2

                                    z^3 -2z^2   + 2z

                                    -------------------------------

                                            z^2  - 2z    +  2

                                           z^2   -2z     + 2

                                          _____________

 

And the two factors are  ( z^2 - 2z + 2 ) (  z^2  + z  + 1 )

 

 

 

cool cool cool

 Nov 2, 2016
 #4
avatar+129839 
0

Melody makes a

 

 

Out of a

 

 

 

LOL!!!!!!!!!   [ Don't worry .......We still love you, Melody.....!!!!! ]

 

 

 

cool cool cool

 Nov 2, 2016

1 Online Users