+0  
 
0
737
1
avatar

Sin2(280°+2Π) x Log(Cos85°) + tanΠ2 - √567

 Dec 17, 2014

Best Answer 

 #1
avatar+118723 
+5

 

Sin2(280°+2Π) x Log(Cos85°) + tanΠ2 - √567

Is this your question?  If it is you can put it straight onto the home page calculator.

 

$$Sin^2(280+2\pi) \times log(Cos85) + tan2\pi - \sqrt{567}$$

 

Did you want it be discussed.  

For starters 

$$Sin^2(280+2\pi) =sin^2(280)$$ 

This is because the sine curve has a period of 2pi.  After that it just repeats.

$$tan(2\pi)=0$$

 Dec 17, 2014
 #1
avatar+118723 
+5
Best Answer

 

Sin2(280°+2Π) x Log(Cos85°) + tanΠ2 - √567

Is this your question?  If it is you can put it straight onto the home page calculator.

 

$$Sin^2(280+2\pi) \times log(Cos85) + tan2\pi - \sqrt{567}$$

 

Did you want it be discussed.  

For starters 

$$Sin^2(280+2\pi) =sin^2(280)$$ 

This is because the sine curve has a period of 2pi.  After that it just repeats.

$$tan(2\pi)=0$$

Melody Dec 17, 2014

2 Online Users