For the general quadratic equation a*x2 + b*x +c = 0 the solutions are given by:
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
By rearranging 7x2 = 2x - 5 to 7x2 - 2x + 5 = 0 we have here that a=7, b=-2, c=5 so
$$x=\frac{2\pm\sqrt{2^2-4*7*5}}{2*7}$$ which results in:
$${\mathtt{7}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{34}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{7}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{34}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{7}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}\left({\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.832\: \!993\: \!127\: \!834\: \!905\: \!8}}{i}\right)\\
{\mathtt{x}} = {\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.832\: \!993\: \!127\: \!834\: \!905\: \!8}}{i}\\
\end{array} \right\}$$
plug in the equation=7x² + 2x - 5
then take it step by step=
7x² + 7x - 5x - 5
7x (x + 1) - 5(x + 1)
(x + 1)(7x - 5)
5q^4 - 28q² - 12
5q^4 - 30q² + 2q² - 12
5q² (q² - 6) + 2(q² - 6)
(q² - 6)(5q² + 2)
2x² - x - 10
2x² + 4x - 5x - 10
2x (x + 2) - 5(x + 2)
(x + 2)(2x - 5)
-36x² - 3x + 60
-3 (12x² + x - 20)
-3 (12x² + 16x - 15x - 20)
-3 [4x(3x + 4) - 5(3x + 4)]
-3 (3x + 4) (4x - 5)
For the general quadratic equation a*x2 + b*x +c = 0 the solutions are given by:
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
By rearranging 7x2 = 2x - 5 to 7x2 - 2x + 5 = 0 we have here that a=7, b=-2, c=5 so
$$x=\frac{2\pm\sqrt{2^2-4*7*5}}{2*7}$$ which results in:
$${\mathtt{7}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{34}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{7}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{34}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{7}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}\left({\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.832\: \!993\: \!127\: \!834\: \!905\: \!8}}{i}\right)\\
{\mathtt{x}} = {\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.832\: \!993\: \!127\: \!834\: \!905\: \!8}}{i}\\
\end{array} \right\}$$