$${\mathtt{\,-\,}}{\sqrt{-{\mathtt{308\,025}}}}$$
$${\mathtt{\,-\,}}{\sqrt{{\mathtt{37}}{\mathtt{\,\times\,}}{\mathtt{37}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}-{\mathtt{1}}}}$$
$${\mathtt{\,-\,}}\left({\sqrt{{\mathtt{37}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{37}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\sqrt{-{\mathtt{1}}}}\right)$$
$${\mathtt{\,-\,}}\left({\mathtt{37}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{-{\mathtt{1}}}}\right)$$
$${\mathtt{\,-\,}}\left({\mathtt{555}}{\mathtt{\,\times\,}}{\sqrt{-{\mathtt{1}}}}\right)$$
$$\left(-{\mathtt{555}}{i}\right)$$
$$-{\mathtt{555}}{i}$$
.There is no number multiplied by itself that will give you a negative number. Unless you use imaginary numbers. By definition i^2= -1
$${\mathtt{\,-\,}}{\sqrt{-{\mathtt{308\,025}}}}$$
$${\mathtt{\,-\,}}{\sqrt{{\mathtt{37}}{\mathtt{\,\times\,}}{\mathtt{37}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}-{\mathtt{1}}}}$$
$${\mathtt{\,-\,}}\left({\sqrt{{\mathtt{37}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{37}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\sqrt{-{\mathtt{1}}}}\right)$$
$${\mathtt{\,-\,}}\left({\mathtt{37}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{-{\mathtt{1}}}}\right)$$
$${\mathtt{\,-\,}}\left({\mathtt{555}}{\mathtt{\,\times\,}}{\sqrt{-{\mathtt{1}}}}\right)$$
$$\left(-{\mathtt{555}}{i}\right)$$
$$-{\mathtt{555}}{i}$$