We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
212
2
avatar+874 

Hello! I came across a probem that I'm stuck on! It is If \(x+\frac{1}{y}=1\) and \(y+\frac{1}{z}=1\), what is the value of the product \(xyz\)?

 

Do you have to expand or square it! Thanks!

 Nov 3, 2018
 #1
avatar+102948 
+2

x +  1/y  =  1

x  =  1 - 1/y  =      [ y - 1] / y

 

And

 

y + 1/z  =  1

1/z  =  1 - y    which implies that

z  =  1 / [ 1 - y]

 

 

 

So    x  y  z   =     

 

 ( [ y - 1] / y  )  * y *  [ 1 / ( 1 - y) ]    = 

 

[  y - 1 ]  *  [  1  / (1 - y) ]  =

 

-1 ( 1 - y)  *  [ 1 / (1 - y) ]  =

 

-1  

 

cool cool cool

 Nov 3, 2018
edited by CPhill  Nov 3, 2018
 #2
avatar+874 
+1

Thank you, CPhill! I understand it better, now!

ant101  Nov 4, 2018

20 Online Users

avatar
avatar
avatar