suppose a capacitor has XC =-8800 Ohms at f = 830 kHz. What is C ?
$$\boxed{X_C = \dfrac{ 1 }{ 2 \cdot \pi \cdot f \cdot C } \qquad
C = \dfrac{ 1 }{ 2 \cdot \pi \cdot f \cdot X_C }
} \\$$
Capacitive reactance, where: XC = reactance in ohms (ohm), f = frequency in hertz (Hz), C = capacitance in farads (F)
We have:
reactance: $$\small{\text{$X_C = 8800\ \Omega$}}$$
frequency: $$\small{\text{$f = 830000\ \rm{Hz} $}}$$
capacitance: $$\small{\text{$C=\dfrac{1}{2\cdot\pi\cdot f\cdot X_C} $}}
\small{\text{$=\dfrac{1}{2\cdot\pi\cdot 830000\cdot (8800)} $}}
\small{\text{$=0.00000000002179011\ \rm{F} = 21.79011\ \rm{pF}$}}$$
![]()
suppose a capacitor has XC =-8800 Ohms at f = 830 kHz. What is C ?
$$\boxed{X_C = \dfrac{ 1 }{ 2 \cdot \pi \cdot f \cdot C } \qquad
C = \dfrac{ 1 }{ 2 \cdot \pi \cdot f \cdot X_C }
} \\$$
Capacitive reactance, where: XC = reactance in ohms (ohm), f = frequency in hertz (Hz), C = capacitance in farads (F)
We have:
reactance: $$\small{\text{$X_C = 8800\ \Omega$}}$$
frequency: $$\small{\text{$f = 830000\ \rm{Hz} $}}$$
capacitance: $$\small{\text{$C=\dfrac{1}{2\cdot\pi\cdot f\cdot X_C} $}}
\small{\text{$=\dfrac{1}{2\cdot\pi\cdot 830000\cdot (8800)} $}}
\small{\text{$=0.00000000002179011\ \rm{F} = 21.79011\ \rm{pF}$}}$$
![]()