+0  
 
0
464
2
avatar

The equation of the hyperbola that has a center at (0,0) , a focus at (5 , 0) , and a vertex at (-4 , 0 ) , is (x^2)/(A^2)-(y^2)/(B^2)=1

where A =_____

B =_____

Guest Jun 16, 2015

Best Answer 

 #2
avatar+92781 
+10

Thanks for your excellent answer Heureka.

 

I just want to practice this for myself because I keep forgetting it.   

 

http://web2.0calc.com/questions/the-equation-of-the-hyperbola-that-has-a-center-at-1-2-a-focus-at-4-2-and-a-vertex-at-3-2-is-frac-x-c-2-a-2-frac-y#r2

 

The equation of the hyperbola that has a center at (0,0) , a focus at (5 , 0) , and a vertex at (-4 , 0 ) , is

$$\frac{x^2}{A^2}-\frac{y^2}{B^2}=1$$

 

Vertex =( 0 $$\pm$$ A, 0)    So A= 4

 

     $$\\Focus=(0\pm \sqrt{A^2+B^2},0)\\\\
\sqrt{16+B^2}=5\\
4^2+B^2=5^2\\
B=3$$

 

$$\frac{x^2}{4^2}-\frac{y^2}{3^2}=1$$

 

Melody  Jun 16, 2015
 #1
avatar+19630 
+10

The equation of the hyperbola that has a center at (0,0) , a focus at (5 , 0) , and a vertex at (-4 , 0 ) , is (x^2)/(A^2)-(y^2)/(B^2)=1

 

$$\dfrac{x^2}{A^2}-\dfrac{y^2}{B^2}=1$$

  

vertex at (-4 , 0 ):

$$\small{\text{$ \begin{array}{l} (-4,0) =(\pm A ,0)\\ A = \pm4 \end{array} $}}$$

 

focus at (5 , 0) :

$$\small{\text{$ \begin{array}{l} (5,0) =(\pm \sqrt{A^2+B^2} ,0)\end{array} $}}\\ \begin{array}{rcl} A^2+B^2 &=& 5^2 = 25\\
(\pm4)^2+B^2 &=& 25\\
B^2 &=& 25-16 = 9\\ B &=& \pm 3
\end{array} $}}$$

 

A = $$\small{\text{$\pm 4$}}$$

B = $$\small{\text{$\pm 3$}}$$

$$\dfrac{x^2}{(\pm 4)^2}-\dfrac{y^2}{(\pm 3)^2}=1$$

 

heureka  Jun 16, 2015
 #2
avatar+92781 
+10
Best Answer

Thanks for your excellent answer Heureka.

 

I just want to practice this for myself because I keep forgetting it.   

 

http://web2.0calc.com/questions/the-equation-of-the-hyperbola-that-has-a-center-at-1-2-a-focus-at-4-2-and-a-vertex-at-3-2-is-frac-x-c-2-a-2-frac-y#r2

 

The equation of the hyperbola that has a center at (0,0) , a focus at (5 , 0) , and a vertex at (-4 , 0 ) , is

$$\frac{x^2}{A^2}-\frac{y^2}{B^2}=1$$

 

Vertex =( 0 $$\pm$$ A, 0)    So A= 4

 

     $$\\Focus=(0\pm \sqrt{A^2+B^2},0)\\\\
\sqrt{16+B^2}=5\\
4^2+B^2=5^2\\
B=3$$

 

$$\frac{x^2}{4^2}-\frac{y^2}{3^2}=1$$

 

Melody  Jun 16, 2015

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.